Cargando…
Universality and Non-Perturbative Definitions of 2D Quantum Gravity from Matrix Models
The universality of the non-perturbative definition of Hermitian one-matrix models following the quantum, stochastic, or $d=1$-like stabilization is discussed in comparison with other procedures. We also present another alternative definition, which illustrates the need of new physical input for $d=...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1992
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0217751X92002957 http://cds.cern.ch/record/228084 |
Sumario: | The universality of the non-perturbative definition of Hermitian one-matrix models following the quantum, stochastic, or $d=1$-like stabilization is discussed in comparison with other procedures. We also present another alternative definition, which illustrates the need of new physical input for $d=0$ matrix models to make contact with 2D quantum gravity at the non-perturbative level. |
---|