Cargando…

A Generalized Construction of Mirror Manifolds

We generalize the known method for explicit construction of mirror pairs of $(2,2)$-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it poss...

Descripción completa

Detalles Bibliográficos
Autores principales: Berglund, Per, Hubsch, Tristan
Lenguaje:eng
Publicado: 1993
Materias:
Acceso en línea:https://dx.doi.org/10.1016/0550-3213(93)90250-S
http://cds.cern.ch/record/228155
_version_ 1780883805080387584
author Berglund, Per
Hubsch, Tristan
author_facet Berglund, Per
Hubsch, Tristan
author_sort Berglund, Per
collection CERN
description We generalize the known method for explicit construction of mirror pairs of $(2,2)$-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known.
id cern-228155
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1993
record_format invenio
spelling cern-2281552020-07-23T02:44:54Zdoi:10.1016/0550-3213(93)90250-Shttp://cds.cern.ch/record/228155engBerglund, PerHubsch, TristanA Generalized Construction of Mirror ManifoldsParticle Physics - TheoryWe generalize the known method for explicit construction of mirror pairs of $(2,2)$-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known.We generalize the known method for explicit construction of mirror pairs of $(2,2)$-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known.We generalize the known method for explicit construction of mirror pairs of $(2,2)$-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known.We generalize the known method for explicit construction of mirror pairs of (2,2)-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories ae realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known.hep-th/9201014CERN-TH-6341-91UTTG-32-91CERN-TH-6341-91UTTG-91-32oai:cds.cern.ch:2281551993
spellingShingle Particle Physics - Theory
Berglund, Per
Hubsch, Tristan
A Generalized Construction of Mirror Manifolds
title A Generalized Construction of Mirror Manifolds
title_full A Generalized Construction of Mirror Manifolds
title_fullStr A Generalized Construction of Mirror Manifolds
title_full_unstemmed A Generalized Construction of Mirror Manifolds
title_short A Generalized Construction of Mirror Manifolds
title_sort generalized construction of mirror manifolds
topic Particle Physics - Theory
url https://dx.doi.org/10.1016/0550-3213(93)90250-S
http://cds.cern.ch/record/228155
work_keys_str_mv AT berglundper ageneralizedconstructionofmirrormanifolds
AT hubschtristan ageneralizedconstructionofmirrormanifolds
AT berglundper generalizedconstructionofmirrormanifolds
AT hubschtristan generalizedconstructionofmirrormanifolds