Cargando…
A tauberian theorem for the conformal bootstrap
For expansions in one-dimensional conformal blocks, we provide a rigorous link between the asymptotics of the spectral density of exchanged primaries and the leading singularity in the crossed channel. Our result has a direct application to systems of SL(2, ℝ)-invariant correlators (also known as 1d...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP12(2017)119 http://cds.cern.ch/record/2282026 |
Sumario: | For expansions in one-dimensional conformal blocks, we provide a rigorous link between the asymptotics of the spectral density of exchanged primaries and the leading singularity in the crossed channel. Our result has a direct application to systems of SL(2, ℝ)-invariant correlators (also known as 1d CFTs). It also puts on solid ground a part of the lightcone bootstrap analysis of the spectrum of operators of high spin and bounded twist in CFTs in d > 2. In addition, a similar argument controls the spectral density asymptotics in large N gauge theories. |
---|