Cargando…

Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori

Let $P$ be a Laplace type operator acting on a smooth hermitean vector bundle $V$ of fiber $\mathbb{C}^N$ over a compact Riemannian manifold given locally by $P= - [g^{\mu\nu} u(x)\partial_\mu\partial_\nu + v^\nu(x)\partial_\nu + w(x)]$ where $u,\,v^\nu,\,w$ are $M_N(\mathbb{C})$-valued functions wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Iochum, Bruno, Masson, Thierry
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2282513
_version_ 1780955658293608448
author Iochum, Bruno
Masson, Thierry
author_facet Iochum, Bruno
Masson, Thierry
author_sort Iochum, Bruno
collection CERN
description Let $P$ be a Laplace type operator acting on a smooth hermitean vector bundle $V$ of fiber $\mathbb{C}^N$ over a compact Riemannian manifold given locally by $P= - [g^{\mu\nu} u(x)\partial_\mu\partial_\nu + v^\nu(x)\partial_\nu + w(x)]$ where $u,\,v^\nu,\,w$ are $M_N(\mathbb{C})$-valued functions with $u(x)$ positive and invertible. For any $a \in \Gamma(\text{End}(V))$, we consider the asymptotics $\text{Tr} (a e^{-tP}) \underset{t \downarrow 0^+}{\sim} \,\sum_{r=0}^\infty a_r(a, P)\,t^{(r-d)/2}$ where the coefficients $a_r(a, P)$ can be written locally as $a_r(a, P)(x) = \text{tr}[a(x) \mathcal{R}_r(x)]$. The computation of $\mathcal{R}_2$ is performed opening the opportunity to calculate the modular scalar curvature for noncommutative tori.
id cern-2282513
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling cern-22825132021-05-03T08:17:15Zhttp://cds.cern.ch/record/2282513engIochum, BrunoMasson, ThierryHeat asymptotics for nonminimal Laplace type operators and application to noncommutative torimath.OAMathematical Physics and Mathematicsmath.MPMathematical Physics and Mathematicsmath-phMathematical Physics and Mathematicshep-thParticle Physics - Theorymath.DGMathematical Physics and MathematicsLet $P$ be a Laplace type operator acting on a smooth hermitean vector bundle $V$ of fiber $\mathbb{C}^N$ over a compact Riemannian manifold given locally by $P= - [g^{\mu\nu} u(x)\partial_\mu\partial_\nu + v^\nu(x)\partial_\nu + w(x)]$ where $u,\,v^\nu,\,w$ are $M_N(\mathbb{C})$-valued functions with $u(x)$ positive and invertible. For any $a \in \Gamma(\text{End}(V))$, we consider the asymptotics $\text{Tr} (a e^{-tP}) \underset{t \downarrow 0^+}{\sim} \,\sum_{r=0}^\infty a_r(a, P)\,t^{(r-d)/2}$ where the coefficients $a_r(a, P)$ can be written locally as $a_r(a, P)(x) = \text{tr}[a(x) \mathcal{R}_r(x)]$. The computation of $\mathcal{R}_2$ is performed opening the opportunity to calculate the modular scalar curvature for noncommutative tori.arXiv:1707.09657oai:cds.cern.ch:22825132017
spellingShingle math.OA
Mathematical Physics and Mathematics
math.MP
Mathematical Physics and Mathematics
math-ph
Mathematical Physics and Mathematics
hep-th
Particle Physics - Theory
math.DG
Mathematical Physics and Mathematics
Iochum, Bruno
Masson, Thierry
Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori
title Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori
title_full Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori
title_fullStr Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori
title_full_unstemmed Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori
title_short Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori
title_sort heat asymptotics for nonminimal laplace type operators and application to noncommutative tori
topic math.OA
Mathematical Physics and Mathematics
math.MP
Mathematical Physics and Mathematics
math-ph
Mathematical Physics and Mathematics
hep-th
Particle Physics - Theory
math.DG
Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2282513
work_keys_str_mv AT iochumbruno heatasymptoticsfornonminimallaplacetypeoperatorsandapplicationtononcommutativetori
AT massonthierry heatasymptoticsfornonminimallaplacetypeoperatorsandapplicationtononcommutativetori