Cargando…
Exploring Deep Computing in CMS for Automated Data Validation in DQM
This project has explored the possibility of inclusion of a variational autoencoder in Automated Data Validation in DQM. The analysis has been carried out only with muon features. The main goal is to reconstruct the given lumisections and check if they can be separated between good and bad lumisecti...
Autor principal: | Fernandez Madrazo, Celia |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2282937 |
Ejemplares similares
-
Trigger Software Validation and DQM Development in SUSY and Exotica Analysis at CMS
por: Hebda, Philip
Publicado: (2009) -
Optimisation of the DQM software
por: Simetka, Vojtech
Publicado: (2014) -
Tracker DQM Machine Learning studies for data certification
por: CMS Collaboration
Publicado: (2021) -
CMS Data Provenance: CERN open data portal data curation automation
por: Almomani, Osama
Publicado: (2022) -
Student Session (5/27): VELO DQM and Central Exclusive Dimuon Production at LHCb
por: Ciaran James Hickey
Publicado: (2011)