Cargando…
Proposal to Measure Hadron Scattering with a Gaseous High Pressure TPC for Neutrino Oscillation Measurements
We propose to perform new measurements of proton and pion scattering on argon using a prototype High Pressure gas Time Projection Chamber (HPTPC) detector, and by doing so to develop the physics case for, and the technological readiness of, an HPTPC as a neutrino detector for accelerator neutrino os...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2284748 |
Sumario: | We propose to perform new measurements of proton and pion scattering on argon using a prototype High Pressure gas Time Projection Chamber (HPTPC) detector, and by doing so to develop the physics case for, and the technological readiness of, an HPTPC as a neutrino detector for accelerator neutrino oscillation searches. The motivation for this work is to improve knowledge of final state interactions, in order to ultimately achieve 1-2% systematic error on neutrino-nucleus scattering for oscillation measurements at 0.6 GeV and 2.5 GeV neutrino energy, as required for the Charge-Parity (CP) violation sensitivity projections by the Hyper-Kamiokande experiment (Hyper-K) and the Deep Underground Neutrino Experiment (DUNE). The final state interaction uncertainties in neutrino-nucleus interactions dominate cross-section systematic errors, currently 5–10% at these energies, and therefore R&D is needed to explore new approaches to achieve this substantial improvement. |
---|