Cargando…

Groups, matrices, and vector spaces: a group theoretic approach to linear algebra

This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and...

Descripción completa

Detalles Bibliográficos
Autor principal: Carrell, James B
Lenguaje:eng
Publicado: Springer 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-0-387-79428-0
http://cds.cern.ch/record/2287877
_version_ 1780956099758784512
author Carrell, James B
author_facet Carrell, James B
author_sort Carrell, James B
collection CERN
description This unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material.  Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.
id cern-2287877
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
publisher Springer
record_format invenio
spelling cern-22878772021-04-21T19:03:12Zdoi:10.1007/978-0-387-79428-0http://cds.cern.ch/record/2287877engCarrell, James BGroups, matrices, and vector spaces: a group theoretic approach to linear algebraMathematical Physics and MathematicsThis unique text provides a geometric approach to group theory and linear algebra, bringing to light the interesting ways in which these subjects interact. Requiring few prerequisites beyond understanding the notion of a proof, the text aims to give students a strong foundation in both geometry and algebra. Starting with preliminaries (relations, elementary combinatorics, and induction), the book then proceeds to the core topics: the elements of the theory of groups and fields (Lagrange's Theorem, cosets, the complex numbers and the prime fields), matrix theory and matrix groups, determinants, vector spaces, linear mappings, eigentheory and diagonalization, Jordan decomposition and normal form, normal matrices, and quadratic forms. The final two chapters consist of a more intensive look at group theory, emphasizing orbit stabilizer methods, and an introduction to linear algebraic groups, which enriches the notion of a matrix group. Applications involving symm etry groups, determinants, linear coding theory and cryptography are interwoven throughout. Each section ends with ample practice problems assisting the reader to better understand the material.  Some of the applications are illustrated in the chapter appendices. The author's unique melding of topics evolved from a two semester course that he taught at the University of British Columbia consisting of an undergraduate honors course on abstract linear algebra and a similar course on the theory of groups. The combined content from both makes this rare text ideal for a year-long course, covering more material than most linear algebra texts. It is also optimal for independent study and as a supplementary text for various professional applications. Advanced undergraduate or graduate students in mathematics, physics, computer science and engineering will find this book both useful and enjoyable.Springeroai:cds.cern.ch:22878772017
spellingShingle Mathematical Physics and Mathematics
Carrell, James B
Groups, matrices, and vector spaces: a group theoretic approach to linear algebra
title Groups, matrices, and vector spaces: a group theoretic approach to linear algebra
title_full Groups, matrices, and vector spaces: a group theoretic approach to linear algebra
title_fullStr Groups, matrices, and vector spaces: a group theoretic approach to linear algebra
title_full_unstemmed Groups, matrices, and vector spaces: a group theoretic approach to linear algebra
title_short Groups, matrices, and vector spaces: a group theoretic approach to linear algebra
title_sort groups, matrices, and vector spaces: a group theoretic approach to linear algebra
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-0-387-79428-0
http://cds.cern.ch/record/2287877
work_keys_str_mv AT carrelljamesb groupsmatricesandvectorspacesagrouptheoreticapproachtolinearalgebra