Cargando…

Machine Learning Algorithms for $b$-Jet Tagging at the ATLAS Experiment

The separation of $b$-quark initiated jets from those coming from lighter quark flavors ($b$-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful $b$-tagging algorithms combine information from low-level taggers, exploiting reconstructed t...

Descripción completa

Detalles Bibliográficos
Autor principal: Paganini, Michela
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/1085/4/042031
http://cds.cern.ch/record/2289214
Descripción
Sumario:The separation of $b$-quark initiated jets from those coming from lighter quark flavors ($b$-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful $b$-tagging algorithms combine information from low-level taggers, exploiting reconstructed track and vertex information, into machine learning classifiers. The potential of modern deep learning techniques is explored using simulated events, and compared to that achievable from more traditional classifiers such as boosted decision trees.