Cargando…
Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
The first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combi...
Autores principales: | , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/4/042042 http://cds.cern.ch/record/2290188 |
_version_ | 1780956292436721664 |
---|---|
author | Acosta, Darin Edward Brinkerhoff, Andrew Wilson Busch, Elena Laura Carnes, Andrew Mathew Furic, Ivan-Kresimir Gleyzer, Sergei Kotov, Khristian Low, Jia Fu Madorsky, Alexander Rorie, Jamal Tildon Scurlock, Bobby Shi, Wei |
author_facet | Acosta, Darin Edward Brinkerhoff, Andrew Wilson Busch, Elena Laura Carnes, Andrew Mathew Furic, Ivan-Kresimir Gleyzer, Sergei Kotov, Khristian Low, Jia Fu Madorsky, Alexander Rorie, Jamal Tildon Scurlock, Bobby Shi, Wei |
author_sort | Acosta, Darin Edward |
collection | CERN |
description | The first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combinations of these variables representing $2^{30}$ distinct patterns are evaluated offline using regression BDTs. The predictions for the $2^{30}$ input variable combinations are stored in a 1.2 GB look-up table in the EMTF hardware. The BDTs take advantage of complex correlations between variables, the inhomogeneous magnetic field, and non-linear effects -- like inelastic scattering -- to distinguish high momentum signal muons from the overwhelming low-momentum background. The new momentum algorithm reduced the background rate by a factor of three with respect to the previous analytic algorithm, with further improvements foreseen in the coming year |
id | cern-2290188 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | cern-22901882021-02-09T10:05:37Zdoi:10.1088/1742-6596/1085/4/042042http://cds.cern.ch/record/2290188engAcosta, Darin EdwardBrinkerhoff, Andrew WilsonBusch, Elena LauraCarnes, Andrew MathewFuric, Ivan-KresimirGleyzer, SergeiKotov, KhristianLow, Jia FuMadorsky, AlexanderRorie, Jamal TildonScurlock, BobbyShi, WeiBoosted Decision Trees in the Level-1 Muon Endcap Trigger at CMSDetectors and Experimental TechniquesThe first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combinations of these variables representing $2^{30}$ distinct patterns are evaluated offline using regression BDTs. The predictions for the $2^{30}$ input variable combinations are stored in a 1.2 GB look-up table in the EMTF hardware. The BDTs take advantage of complex correlations between variables, the inhomogeneous magnetic field, and non-linear effects -- like inelastic scattering -- to distinguish high momentum signal muons from the overwhelming low-momentum background. The new momentum algorithm reduced the background rate by a factor of three with respect to the previous analytic algorithm, with further improvements foreseen in the coming yearCMS-CR-2017-357oai:cds.cern.ch:22901882017-10-10 |
spellingShingle | Detectors and Experimental Techniques Acosta, Darin Edward Brinkerhoff, Andrew Wilson Busch, Elena Laura Carnes, Andrew Mathew Furic, Ivan-Kresimir Gleyzer, Sergei Kotov, Khristian Low, Jia Fu Madorsky, Alexander Rorie, Jamal Tildon Scurlock, Bobby Shi, Wei Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS |
title | Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS |
title_full | Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS |
title_fullStr | Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS |
title_full_unstemmed | Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS |
title_short | Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS |
title_sort | boosted decision trees in the level-1 muon endcap trigger at cms |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1088/1742-6596/1085/4/042042 http://cds.cern.ch/record/2290188 |
work_keys_str_mv | AT acostadarinedward boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT brinkerhoffandrewwilson boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT buschelenalaura boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT carnesandrewmathew boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT furicivankresimir boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT gleyzersergei boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT kotovkhristian boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT lowjiafu boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT madorskyalexander boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT roriejamaltildon boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT scurlockbobby boosteddecisiontreesinthelevel1muonendcaptriggeratcms AT shiwei boosteddecisiontreesinthelevel1muonendcaptriggeratcms |