Cargando…

Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS

The first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combi...

Descripción completa

Detalles Bibliográficos
Autores principales: Acosta, Darin Edward, Brinkerhoff, Andrew Wilson, Busch, Elena Laura, Carnes, Andrew Mathew, Furic, Ivan-Kresimir, Gleyzer, Sergei, Kotov, Khristian, Low, Jia Fu, Madorsky, Alexander, Rorie, Jamal Tildon, Scurlock, Bobby, Shi, Wei
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/1085/4/042042
http://cds.cern.ch/record/2290188
_version_ 1780956292436721664
author Acosta, Darin Edward
Brinkerhoff, Andrew Wilson
Busch, Elena Laura
Carnes, Andrew Mathew
Furic, Ivan-Kresimir
Gleyzer, Sergei
Kotov, Khristian
Low, Jia Fu
Madorsky, Alexander
Rorie, Jamal Tildon
Scurlock, Bobby
Shi, Wei
author_facet Acosta, Darin Edward
Brinkerhoff, Andrew Wilson
Busch, Elena Laura
Carnes, Andrew Mathew
Furic, Ivan-Kresimir
Gleyzer, Sergei
Kotov, Khristian
Low, Jia Fu
Madorsky, Alexander
Rorie, Jamal Tildon
Scurlock, Bobby
Shi, Wei
author_sort Acosta, Darin Edward
collection CERN
description The first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combinations of these variables representing $2^{30}$ distinct patterns are evaluated offline using regression BDTs. The predictions for the $2^{30}$ input variable combinations are stored in a 1.2 GB look-up table in the EMTF hardware. The BDTs take advantage of complex correlations between variables, the inhomogeneous magnetic field, and non-linear effects -- like inelastic scattering -- to distinguish high momentum signal muons from the overwhelming low-momentum background. The new momentum algorithm reduced the background rate by a factor of three with respect to the previous analytic algorithm, with further improvements foreseen in the coming year
id cern-2290188
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling cern-22901882021-02-09T10:05:37Zdoi:10.1088/1742-6596/1085/4/042042http://cds.cern.ch/record/2290188engAcosta, Darin EdwardBrinkerhoff, Andrew WilsonBusch, Elena LauraCarnes, Andrew MathewFuric, Ivan-KresimirGleyzer, SergeiKotov, KhristianLow, Jia FuMadorsky, AlexanderRorie, Jamal TildonScurlock, BobbyShi, WeiBoosted Decision Trees in the Level-1 Muon Endcap Trigger at CMSDetectors and Experimental TechniquesThe first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combinations of these variables representing $2^{30}$ distinct patterns are evaluated offline using regression BDTs. The predictions for the $2^{30}$ input variable combinations are stored in a 1.2 GB look-up table in the EMTF hardware. The BDTs take advantage of complex correlations between variables, the inhomogeneous magnetic field, and non-linear effects -- like inelastic scattering -- to distinguish high momentum signal muons from the overwhelming low-momentum background. The new momentum algorithm reduced the background rate by a factor of three with respect to the previous analytic algorithm, with further improvements foreseen in the coming yearCMS-CR-2017-357oai:cds.cern.ch:22901882017-10-10
spellingShingle Detectors and Experimental Techniques
Acosta, Darin Edward
Brinkerhoff, Andrew Wilson
Busch, Elena Laura
Carnes, Andrew Mathew
Furic, Ivan-Kresimir
Gleyzer, Sergei
Kotov, Khristian
Low, Jia Fu
Madorsky, Alexander
Rorie, Jamal Tildon
Scurlock, Bobby
Shi, Wei
Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
title Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
title_full Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
title_fullStr Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
title_full_unstemmed Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
title_short Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
title_sort boosted decision trees in the level-1 muon endcap trigger at cms
topic Detectors and Experimental Techniques
url https://dx.doi.org/10.1088/1742-6596/1085/4/042042
http://cds.cern.ch/record/2290188
work_keys_str_mv AT acostadarinedward boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT brinkerhoffandrewwilson boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT buschelenalaura boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT carnesandrewmathew boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT furicivankresimir boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT gleyzersergei boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT kotovkhristian boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT lowjiafu boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT madorskyalexander boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT roriejamaltildon boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT scurlockbobby boosteddecisiontreesinthelevel1muonendcaptriggeratcms
AT shiwei boosteddecisiontreesinthelevel1muonendcaptriggeratcms