Cargando…
Boosted Decision Trees in the Level-1 Muon Endcap Trigger at CMS
The first implementation of a Machine Learning Algorithm inside a Level-1 trigger system at the LHC is presented. The Endcap Muon Track Finder (EMTF) at CMS uses Boosted Decision Trees (BDTs) to infer the momentum of muons in the forward region of the detector, based on 25 different variables. Combi...
Autores principales: | Acosta, Darin Edward, Brinkerhoff, Andrew Wilson, Busch, Elena Laura, Carnes, Andrew Mathew, Furic, Ivan-Kresimir, Gleyzer, Sergei, Kotov, Khristian, Low, Jia Fu, Madorsky, Alexander, Rorie, Jamal Tildon, Scurlock, Bobby, Shi, Wei |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1085/4/042042 http://cds.cern.ch/record/2290188 |
Ejemplares similares
-
Boosted decision trees in the CMS Level-1 endcap muon trigger
por: Low, Jia Fu, et al.
Publicado: (2017) -
The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System
por: Acosta, Darin, et al.
Publicado: (1999) -
The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System
por: Madorsky, A, et al.
Publicado: (2001) -
A prototype track-finding processor for the level-1 trigger of the CMS endcap muon system
por: Wang, S M, et al.
Publicado: (2001) -
Design Considerations for an Upgraded Track-Finding Processor in the Level-1 Endcap Muon Trigger of CMS for SLHC operations
por: Acosta, D, et al.
Publicado: (2009)