Cargando…
The model of an anomaly detector for HiLumi LHC magnets based on Recurrent Neural Networks and adaptive quantization
This paper focuses on an examination of an applicability of Recurrent Neural Network models for detecting anomalous behavior of the CERN superconducting magnets. In order to conduct the experiments, the authors designed and implemented an adaptive signal quantization algorithm and a custom Gated Rec...
Autores principales: | Wielgosz, Maciej, Mertik, Matej, Skoczeń, Andrzej, De Matteis, Ernesto |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.engappai.2018.06.012 http://cds.cern.ch/record/2290735 |
Ejemplares similares
-
Recurrent Neural Networks for anomaly detection in the Post-Mortem time series of LHC superconducting magnets
por: Wielgosz, Maciej, et al.
Publicado: (2017) -
Using LSTM recurrent neural networks for monitoring the LHC superconducting magnets
por: Wielgosz, Maciej, et al.
Publicado: (2016) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Ensemble Reservoir Computing for Dynamical Systems: Prediction of Phase-Space Stable Region for Hadron Storage Rings
por: Casanova, Maxime, et al.
Publicado: (2023)