Cargando…

New baryonic and mesonic observables from NA61/SHINE

One of the main objectives of the NA61/SHINE experiment at the CERN SPS is to study properties of strongly interacting matter. This paper presents new results on observables relevant for this part of the NA61/SHINE programme. These include the first ever measurements of ϕ meson production in p+p col...

Descripción completa

Detalles Bibliográficos
Autor principal: Marcinek, Antoni
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1051/epjconf/201818202082
http://cds.cern.ch/record/2294669
_version_ 1780956660849704960
author Marcinek, Antoni
author_facet Marcinek, Antoni
author_sort Marcinek, Antoni
collection CERN
description One of the main objectives of the NA61/SHINE experiment at the CERN SPS is to study properties of strongly interacting matter. This paper presents new results on observables relevant for this part of the NA61/SHINE programme. These include the first ever measurements of ϕ meson production in p+p collisions at 40 and 80 GeV, and most detailed ever experimental data at 158 GeV. This contribution demonstrates the superior accuracy of the present dataset with respect to existing measurements. The comparison of p+p to Pb+Pb collisions shows a non-trivial system size dependence of the longitudinal evolution of hidden strangeness production, contrasting with that of other mesons. Furthermore, proton density fluctuations are investigated as a possible order parameter of the second order phase transition in the neighbourhood of the critical point (CP) of strongly interacting matter. An intermittency analysis is performed of the proton second scaled factorial moments in transverse momentum space. A previous analysis of this sort revealed significant power-law fluctuations for the “Si”+Si system at 158A GeV measured by the NA49 experiment. The fitted power-law exponent was consistent within errors with the theoretically expected critical value, a result suggesting a baryochemical potential in the vicinity of the CP of about 250MeV [24]. The analysis will now be extended to NA61/SHINE systems of similar size, Be+Be and Ar+Sc, at 150A GeV. Finally, spectator-induced electromagnetic (EM) effects on charged meson production are being studied and bring information on the space-time position of the pion formation zone, which appears to be much closer to the spectator system for faster pions than for slower ones. On that basis, we demonstrate that the longitudinal evolution of the system at CERN SPS energies may be interpreted as a pure consequence of local energymomentum conservation.
id cern-2294669
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
record_format invenio
spelling cern-22946692023-03-14T18:32:33Zdoi:10.1051/epjconf/201818202082http://cds.cern.ch/record/2294669engMarcinek, AntoniNew baryonic and mesonic observables from NA61/SHINEhep-exParticle Physics - ExperimentOne of the main objectives of the NA61/SHINE experiment at the CERN SPS is to study properties of strongly interacting matter. This paper presents new results on observables relevant for this part of the NA61/SHINE programme. These include the first ever measurements of ϕ meson production in p+p collisions at 40 and 80 GeV, and most detailed ever experimental data at 158 GeV. This contribution demonstrates the superior accuracy of the present dataset with respect to existing measurements. The comparison of p+p to Pb+Pb collisions shows a non-trivial system size dependence of the longitudinal evolution of hidden strangeness production, contrasting with that of other mesons. Furthermore, proton density fluctuations are investigated as a possible order parameter of the second order phase transition in the neighbourhood of the critical point (CP) of strongly interacting matter. An intermittency analysis is performed of the proton second scaled factorial moments in transverse momentum space. A previous analysis of this sort revealed significant power-law fluctuations for the “Si”+Si system at 158A GeV measured by the NA49 experiment. The fitted power-law exponent was consistent within errors with the theoretically expected critical value, a result suggesting a baryochemical potential in the vicinity of the CP of about 250MeV [24]. The analysis will now be extended to NA61/SHINE systems of similar size, Be+Be and Ar+Sc, at 150A GeV. Finally, spectator-induced electromagnetic (EM) effects on charged meson production are being studied and bring information on the space-time position of the pion formation zone, which appears to be much closer to the spectator system for faster pions than for slower ones. On that basis, we demonstrate that the longitudinal evolution of the system at CERN SPS energies may be interpreted as a pure consequence of local energymomentum conservation.One of the main objectives of the NA61/SHINE experiment at the CERN SPS is to study properties of strongly interacting matter. This paper presents new results on observables relevant for this part of the NA61/SHINE programme. These include the first ever measurements of $\phi$ meson production in p+p collisions at 40 and 80 GeV, and most detailed ever experimental data at 158 GeV. This contribution demonstrates the superior accuracy of the present dataset with respect to existing measurements. The comparison of p+p to Pb+Pb collisions shows a non-trivial system size dependence of the longitudinal evolution of hidden strangeness production, contrasting with that of other mesons. Furthermore, proton density fluctuations are investigated as a possible order parameter of the second order phase transition in the neighbourhood of the critical point (CP) of strongly interacting matter. An intermittency analysis is performed of the proton second scaled factorial moments in transverse momentum space. A previous analysis of this sort revealed significant power-law fluctuations for the "Si"+Si system at 158A GeV measured by the NA49 experiment. The fitted power-law exponent was consistent within errors with the theoretically expected critical value, a result suggesting a baryochemical potential in the vicinity of the CP of about 250 MeV. The analysis will now be extended to NA61/SHINE systems of similar size, Be+Be and Ar+Sc, at 150A GeV. Finally, spectator-induced electromagnetic (EM) effects on charged meson production are being studied and bring information on the space-time position of the pion formation zone, which appears to be much closer to the spectator system for faster pions than for slower ones. On that basis, we demonstrate that the longitudinal evolution of the system at CERN SPS energies may be interpreted as a pure consequence of local energy-momentum conservation.arXiv:1711.09633oai:cds.cern.ch:22946692018
spellingShingle hep-ex
Particle Physics - Experiment
Marcinek, Antoni
New baryonic and mesonic observables from NA61/SHINE
title New baryonic and mesonic observables from NA61/SHINE
title_full New baryonic and mesonic observables from NA61/SHINE
title_fullStr New baryonic and mesonic observables from NA61/SHINE
title_full_unstemmed New baryonic and mesonic observables from NA61/SHINE
title_short New baryonic and mesonic observables from NA61/SHINE
title_sort new baryonic and mesonic observables from na61/shine
topic hep-ex
Particle Physics - Experiment
url https://dx.doi.org/10.1051/epjconf/201818202082
http://cds.cern.ch/record/2294669
work_keys_str_mv AT marcinekantoni newbaryonicandmesonicobservablesfromna61shine