Cargando…
Renormalization group evolution of Higgs effective field theory
The one-loop renormalization of the action for a set of Dirac fermions and a set of scalars spanning an arbitrary manifold coupled via Yukawa-like and gauge interactions is presented. The computation is performed with functional methods and in a geometric formulation that preserves at all stages the...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.97.035010 http://cds.cern.ch/record/2294836 |
Sumario: | The one-loop renormalization of the action for a set of Dirac fermions and a set of scalars spanning an arbitrary manifold coupled via Yukawa-like and gauge interactions is presented. The computation is performed with functional methods and in a geometric formulation that preserves at all stages the symmetries of the action. The result is then applied to Higgs effective field theory to obtain the renormalization group evolution. In the standard model limit of this effective field theory the renormalization group evolution equations collapse into a smaller linearly independent set; this allows to probe the dynamics of the scalar discovered at LHC via de-correlations in the running of couplings. |
---|