Cargando…

Statistical theory: a concise introduction

Introduction Preamble Likelihood Sufficiency Minimal sufficiency Completeness Exponential family of distributionsPoint Estimation Introduction Maximum likelihood estimation Method of moments Method of least squares Goodness-of-estimation. Mean squared error. Unbiased estimationConfidence Intervals,...

Descripción completa

Detalles Bibliográficos
Autores principales: Abramovich, Felix, Ritov, Ya'acov
Lenguaje:eng
Publicado: CRC Press 2013
Materias:
Acceso en línea:http://cds.cern.ch/record/2295469
_version_ 1780956684246581248
author Abramovich, Felix
Ritov, Ya'acov
author_facet Abramovich, Felix
Ritov, Ya'acov
author_sort Abramovich, Felix
collection CERN
description Introduction Preamble Likelihood Sufficiency Minimal sufficiency Completeness Exponential family of distributionsPoint Estimation Introduction Maximum likelihood estimation Method of moments Method of least squares Goodness-of-estimation. Mean squared error. Unbiased estimationConfidence Intervals, Bounds, and Regions Introduction Quoting the estimation error Confidence intervalsConfidence bounds Confidence regionsHypothesis Testing Introduction Simple hypothesesComposite hypothesesHypothesis testing and confidence intervals Sequential testingAsymptotic Analysis Introduction Convergence and consistency in MSE Convergence and consistency in probability Convergence in distribution The central limit theorem Asymptotically normal consistency Asymptotic confidence intervals Asymptotic normality of the MLE Multiparameter case Asymptotic distribution of the GLRT. Wilks' theorem.Bayesian Inference Introduction Choice of priors Point estimation Interval estimation. Credible sets. Hypothesis testingElements of Statistical Decision Theory Introduction and notations Risk function and admissibility Minimax risk and minimax rules Bayes risk and Bayes rules Posterior expected loss and Bayes actions Admissibility and minimaxity of Bayes rules Linear ModelsIntroduction Definition and examples Estimation of regression coefficients Residuals. Estimation of the variance. Examples Goodness-of-fit. Multiple correlation coefficient. Confidence intervals and regions for the coefficients Hypothesis testing in linear models Predictions Analysis of varianceAppendix A: Probabilistic ReviewAppendix B: Solutions of Selected ExercisesIndexExercises appear at the end of each chapter.
id cern-2295469
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
publisher CRC Press
record_format invenio
spelling cern-22954692021-04-21T19:00:19Zhttp://cds.cern.ch/record/2295469engAbramovich, FelixRitov, Ya'acovStatistical theory: a concise introductionMathematical Physics and MathematicsIntroduction Preamble Likelihood Sufficiency Minimal sufficiency Completeness Exponential family of distributionsPoint Estimation Introduction Maximum likelihood estimation Method of moments Method of least squares Goodness-of-estimation. Mean squared error. Unbiased estimationConfidence Intervals, Bounds, and Regions Introduction Quoting the estimation error Confidence intervalsConfidence bounds Confidence regionsHypothesis Testing Introduction Simple hypothesesComposite hypothesesHypothesis testing and confidence intervals Sequential testingAsymptotic Analysis Introduction Convergence and consistency in MSE Convergence and consistency in probability Convergence in distribution The central limit theorem Asymptotically normal consistency Asymptotic confidence intervals Asymptotic normality of the MLE Multiparameter case Asymptotic distribution of the GLRT. Wilks' theorem.Bayesian Inference Introduction Choice of priors Point estimation Interval estimation. Credible sets. Hypothesis testingElements of Statistical Decision Theory Introduction and notations Risk function and admissibility Minimax risk and minimax rules Bayes risk and Bayes rules Posterior expected loss and Bayes actions Admissibility and minimaxity of Bayes rules Linear ModelsIntroduction Definition and examples Estimation of regression coefficients Residuals. Estimation of the variance. Examples Goodness-of-fit. Multiple correlation coefficient. Confidence intervals and regions for the coefficients Hypothesis testing in linear models Predictions Analysis of varianceAppendix A: Probabilistic ReviewAppendix B: Solutions of Selected ExercisesIndexExercises appear at the end of each chapter.CRC Pressoai:cds.cern.ch:22954692013
spellingShingle Mathematical Physics and Mathematics
Abramovich, Felix
Ritov, Ya'acov
Statistical theory: a concise introduction
title Statistical theory: a concise introduction
title_full Statistical theory: a concise introduction
title_fullStr Statistical theory: a concise introduction
title_full_unstemmed Statistical theory: a concise introduction
title_short Statistical theory: a concise introduction
title_sort statistical theory: a concise introduction
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2295469
work_keys_str_mv AT abramovichfelix statisticaltheoryaconciseintroduction
AT ritovyaacov statisticaltheoryaconciseintroduction