Cargando…
Deep Learning Methods for Particle Reconstruction in the HGCal
The High Granularity end-cap Calorimeter is part of the phase-2 CMS upgrade (see Figure 1)[1]. It’s goal it to provide measurements of high resolution in time, space and energy. Given such measurements, the purpose of this work is to discuss the use of Deep Neural Networks for the task of particle a...
Autor principal: | Arzi, Ofir |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2296762 |
Ejemplares similares
-
Deep Learning in the HGCal
por: Arzi, Ofir
Publicado: (2017) -
Time Measurement Calibration of HGCAL Prototype Modules
por: Khaldie, Mariam Imad
Publicado: (2019) -
HGCAL Fast Simulation with Deep Learning
por: Barin Pacela, Vitoria
Publicado: (2018) -
Study of the timing performance of the SKIROC2-CMS for the CMS HGCAL
por: Huiberts, Simon Kristian
Publicado: (2017) -
Characterization of single-diode silicon sensors for the CMS HGCAL project
por: Amer, Jenan Z M
Publicado: (2023)