Cargando…

Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning

Detalles Bibliográficos
Autor principal: Lakshmanan, Valliappa
Lenguaje:eng
Publicado: O'Reilly Media 2018
Materias:
Acceso en línea:http://cds.cern.ch/record/2300512
_version_ 1780957123160571904
author Lakshmanan, Valliappa
author_facet Lakshmanan, Valliappa
author_sort Lakshmanan, Valliappa
collection CERN
id cern-2300512
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
publisher O'Reilly Media
record_format invenio
spelling cern-23005122021-04-21T18:56:43Zhttp://cds.cern.ch/record/2300512engLakshmanan, ValliappaData science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learningComputing and ComputersO'Reilly Mediaoai:cds.cern.ch:23005122018
spellingShingle Computing and Computers
Lakshmanan, Valliappa
Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
title Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
title_full Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
title_fullStr Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
title_full_unstemmed Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
title_short Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
title_sort data science on the google cloud platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
topic Computing and Computers
url http://cds.cern.ch/record/2300512
work_keys_str_mv AT lakshmananvalliappa datascienceonthegooglecloudplatformimplementingendtoendrealtimedatapipelinesfromingesttomachinelearning