Cargando…

Markov chains and mixing times

Markov Chains and Mixing Times is a magical book, managing to be both friendly and deep. It gently introduces probabilistic techniques so that an outsider can follow. At the same time, it is the first book covering the geometric theory of Markov chains and has much that will be new to experts. It is...

Descripción completa

Detalles Bibliográficos
Autores principales: Levin, David A, Peres, Yuval
Lenguaje:eng
Publicado: American Mathematical Society 2017
Materias:
Acceso en línea:http://cds.cern.ch/record/2301135
Descripción
Sumario:Markov Chains and Mixing Times is a magical book, managing to be both friendly and deep. It gently introduces probabilistic techniques so that an outsider can follow. At the same time, it is the first book covering the geometric theory of Markov chains and has much that will be new to experts. It is certainly THE book that I will use to teach from. I recommend it to all comers, an amazing achievement. -Persi Diaconis, Mary V. Sunseri Professor of Statistics and Mathematics, Stanford University Mixing times are an active research topic within many fields from statistical physics to the theory of algorithms, as well as having intrinsic interest within mathematical probability and exploiting discrete analogs of important geometry concepts. The first edition became an instant classic, being accessible to advanced undergraduates and yet bringing readers close to current research frontiers. This second edition adds chapters on monotone chains, the exclusion process and hitting time parameters. Having both exercises and citations to important research papers it makes an outstanding basis for either a lecture course or self-study. -David Aldous, University of California, Berkeley Mixing time is the key to Markov chain Monte Carlo, the queen of approximation techniques. With new chapters on monotone chains, exclusion processes, and set-hitting, Markov Chains and Mixing Times is more comprehensive and thus more indispensable than ever. Prepare for an eye-opening mathematical tour! -Peter Winkler, Dartmouth College The study of finite Markov chains has recently attracted increasing interest from a variety of researchers. This is the second edition of a very valuable book on the subject. The main focus is on the mixing time of Markov chains, but there is a lot of additional material. In this edition, the authors have taken the opportunity to add new material and bring the reader up to date on the latest research. I have used the first edition in a graduate course and I look forward to using this edition for the same purpose in the near future. -Alan Frieze, Carnegie Mellon University This book is an introduction to the modern theory of Markov chains, whose goal is to determine the rate of convergence to the stationary distribution, as a function of state space size and geometry. This topic has important connections to combinatorics, statistical physics, and theoretical computer science. Many of the techniques presented originate in these disciplines. The central tools for estimating convergence times, including coupling, strong stationary times, and spectral methods, are developed. The authors discuss many examples, including card shuffling and the Ising model, from statistical mechanics, and present the connection of random walks to electrical networks and apply it to estimate hitting and cover times. The first edition has been used in courses in mathematics and computer science departments of numerous universities. The second edition features three new chapters (on monotone chains, the exclusion process, and stationary times) and also includes smaller additions and corrections throughout. Updated notes at the end of each chapter inform the reader of recent research developments.