Cargando…
Approximate Inference and Deep Generative Models
<!--HTML--><p>Advances in deep generative models are at the forefront of deep learning research because of the promise they offer for allowing data-efficient learning, and for model-based reinforcement learning. In this talk I'll review a few standard methods for approximate inferen...
Autor principal: | Rezende, Danilo J. |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2302480 |
Ejemplares similares
-
THE SUCCESS OF DEEP GENERATIVE MODELS
por: Tomczak, Jakub
Publicado: (2018) -
Model/dataset compression for optimizing the efficiency of deep networks
por: Osadchy, Margarita
Publicado: (2023) -
Hyperparameter Optimization for Deep Learning Models Using High Performance Computing
por: Wulff, Eric
Publicado: (2023) -
Automatic Differentiation and Deep Learning
por: Chintala, Soumith
Publicado: (2018) -
Scalable Deep Learning with Apache MXNet
por: Rauschmayr, Nathalie
Publicado: (2019)