Cargando…

Electroweak probes with ATLAS

Measuring electroweak bosons in relativistic heavy ion collisions at high energy provide an opportunity to understand temporal evolution of the quark-gluon plasma created in such collisions by constraining the initial state of the interaction. Due to lack of colour charges the bosons and or particle...

Descripción completa

Detalles Bibliográficos
Autor principal: Milov, Alexander
Lenguaje:eng
Publicado: SISSA 2018
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.320.0016
http://cds.cern.ch/record/2304374
_version_ 1780957448918532096
author Milov, Alexander
author_facet Milov, Alexander
author_sort Milov, Alexander
collection CERN
description Measuring electroweak bosons in relativistic heavy ion collisions at high energy provide an opportunity to understand temporal evolution of the quark-gluon plasma created in such collisions by constraining the initial state of the interaction. Due to lack of colour charges the bosons and or particles produced in their leptonic decays are unaffected by the quark-gluon plasma and therefore preserve the information about the very early stage of the collision when they were born. This singles EW bosons as a unique and very interesting class of observables in HI collisions. The ATLAS experiment at LHC measures production of electroweak bosons in $pp$, $p$+Pb and Pb+Pb collisions systems. A review of the existing results is given in this proceeding that includes studies made with isolated photons to constraint kinematic properties and flavour composition of associated jets, measurements of $W$ and $Z$ bosons used to estimate nuclear modification of PDF and the production rates of the bosons used to verify geometric models implied to estimate event centrality. A novel analysis on measuring two particle correlations in $pp$ collisions where the $Z$ boson is registered is also discussed in the proceeding. This is the first attempt to break into the initial geometry of the $pp$ collisions by constraining the impact parameter with a hard scattering process. It shows that the strength of the two particle correlations in such collision is $1.08\pm0.06$ above the inclusive. To make the measurement ATLAS solves the technical problem of measuring the underlying event in high pileup condition.
id cern-2304374
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
publisher SISSA
record_format invenio
spelling cern-23043742023-03-14T19:22:05Zdoi:10.22323/1.320.0016http://cds.cern.ch/record/2304374engMilov, AlexanderElectroweak probes with ATLASNuclear Physics - ExperimentParticle Physics - ExperimentMeasuring electroweak bosons in relativistic heavy ion collisions at high energy provide an opportunity to understand temporal evolution of the quark-gluon plasma created in such collisions by constraining the initial state of the interaction. Due to lack of colour charges the bosons and or particles produced in their leptonic decays are unaffected by the quark-gluon plasma and therefore preserve the information about the very early stage of the collision when they were born. This singles EW bosons as a unique and very interesting class of observables in HI collisions. The ATLAS experiment at LHC measures production of electroweak bosons in $pp$, $p$+Pb and Pb+Pb collisions systems. A review of the existing results is given in this proceeding that includes studies made with isolated photons to constraint kinematic properties and flavour composition of associated jets, measurements of $W$ and $Z$ bosons used to estimate nuclear modification of PDF and the production rates of the bosons used to verify geometric models implied to estimate event centrality. A novel analysis on measuring two particle correlations in $pp$ collisions where the $Z$ boson is registered is also discussed in the proceeding. This is the first attempt to break into the initial geometry of the $pp$ collisions by constraining the impact parameter with a hard scattering process. It shows that the strength of the two particle correlations in such collision is $1.08\pm0.06$ above the inclusive. To make the measurement ATLAS solves the technical problem of measuring the underlying event in high pileup condition.Measuring electroweak bosons in relativistic heavy ion collisions at high energy provide an opportunity to understand temporal evolution of the quark-gluon plasma created in such collisions by constraining the initial state of the interaction. Due to lack of colour charges the bosons and or particles produced in their leptonic decays are unaffected by the quark-gluon plasma and therefore preserve the information about the very early stage of the collision when they were born. This singles electroweak bosons as a unique and very interesting class of observables in heavy ion collisions.The ATLAS experiment at LHC measures production of electroweak bosons in $pp$, $p$+Pb and Pb+Pb collisions systems. A review of the existing results is given in this proceeding that includes studies made with isolated photons to constraint kinematic properties and flavour composition of associated jets, measurements of $W$ and $Z$ bosons used to estimate nuclear modification of parton distribution function and the production rates of the bosons used to verify geometric models implied to estimate event centrality. A novel analysis on measuring two particle correlations in \pp collisions where the $Z$ boson is registered is also discussed in the proceeding. This is the first attempt to break into the initial geometry of the \pp collisions by constraining the impact parameter with a hard scattering process. It shows that the strength of the two particle correlations in such collision is $1.08\pm0.06$ above the inclusive. To make the measurement ATLAS solves the technical problem of measuring the underlying event in high pileup condition.Measuring electroweak bosons in relativistic heavy ion collisions at high energy provide an opportunity to understand temporal evolution of the quark-gluon plasma created in such collisions by constraining the initial state of the interaction. Due to lack of color charges the bosons and or particles produced in their leptonic decays are unaffected by the quark-gluon plasma and therefore preserve the information about the very early stage of the collision when they were born. This singles electroweak bosons as a unique and very interesting class of observables in heavy ion collisions. The ATLAS experiment at LHC measures production of electroweak bosons in pp, p+Pb, and Pb + Pb collisions systems. A review of the existing results is given in this proceeding that includes studies made with isolated photons to constraint kinematic properties and flavour composition of associated jets, measurements of W and Z bosons used to estimate nuclear modification of parton distribution function and the production rates of the bosons used to verify geometric models implied to estimate event centrality. A novel analysis on measuring two-particle correlations in pp collisions where the Z boson is registered is also discussed in the proceeding. This is the first attempt to break into the initial geometry of the pp collisions by constraining the impact parameter with a hard scattering process. It shows that the strength of the two particle correlations in such collision is 1.08+/-0.06 above the inclusive. To make the measurement ATLAS solves the technical problem of measuring the underlying event in high pileup condition.SISSAarXiv:1802.06541ATL-PHYS-PROC-2018-014oai:cds.cern.ch:23043742018-02-13
spellingShingle Nuclear Physics - Experiment
Particle Physics - Experiment
Milov, Alexander
Electroweak probes with ATLAS
title Electroweak probes with ATLAS
title_full Electroweak probes with ATLAS
title_fullStr Electroweak probes with ATLAS
title_full_unstemmed Electroweak probes with ATLAS
title_short Electroweak probes with ATLAS
title_sort electroweak probes with atlas
topic Nuclear Physics - Experiment
Particle Physics - Experiment
url https://dx.doi.org/10.22323/1.320.0016
http://cds.cern.ch/record/2304374
work_keys_str_mv AT milovalexander electroweakprobeswithatlas