Cargando…

A structural test for the conformal invariance of the critical 3d Ising model

How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current — a non-conserved vector operator of dimension exactly (d − 1), whose divergence expresses the trace of the stress tensor. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Meneses, Simão, Penedones, João, Rychkov, Slava, Viana Parente Lopes, J.M., Yvernay, Pierre
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP04(2019)115
http://cds.cern.ch/record/2305770
Descripción
Sumario:How can a renormalization group fixed point be scale invariant without being conformal? Polchinski (1988) showed that this may happen if the theory contains a virial current — a non-conserved vector operator of dimension exactly (d − 1), whose divergence expresses the trace of the stress tensor. We point out that this scenario can be probed via lattice Monte Carlo simulations, using the critical 3d Ising model as an example. Our results put a lower bound Δ$_{V}$ > 5.0 on the scaling dimension of the lowest virial current candidate V, well above 2 expected for the true virial current. This implies that the critical 3d Ising model has no virial current, providing a structural explanation for the conformal invariance of the model.