Cargando…
Poincaré Embeddings for Learning Hierarchical Representations
<!--HTML--><p><u><strong>Abstracts:</strong></u> Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the...
Autor principal: | Nickel, Maximilian |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2306315 |
Ejemplares similares
-
Learning to discover: machine learning in high-energy physics
por: Kégl, Balázs
Publicado: (2014) -
A short history of neutrinos, what we have learned about them, what we have learned using them, up to neutrino oscillations.”
por: Steinberger, Jack
Publicado: (2012) -
Automatic Differentiation and Deep Learning
por: Chintala, Soumith
Publicado: (2018) -
Machine Learning applications in CMS
por: Stoye, Markus
Publicado: (2017) -
Scalable Deep Learning with Apache MXNet
por: Rauschmayr, Nathalie
Publicado: (2019)