Cargando…
Nearly isentropic flow at sizeable $\eta/s$
Non-linearities in the harmonic spectra of hadron-nucleus and nucleus-nucleus collisions provide evidence for the dynamical response to azimuthal spatial eccentricities. Here, we demonstrate within the framework of transport theory that even the mildest interaction correction to a picture of free-st...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2018.06.064 http://cds.cern.ch/record/2307389 |
Sumario: | Non-linearities in the harmonic spectra of hadron-nucleus and nucleus-nucleus collisions provide evidence for the dynamical response to azimuthal spatial eccentricities. Here, we demonstrate within the framework of transport theory that even the mildest interaction correction to a picture of free-streaming particle distributions, namely the inclusion of one perturbatively weak interaction ("one-hit dynamics"), will generically give rise to all observed linear and non-linear structures. We further argue that transport theory naturally accounts within the range of its validity for realistic signal sizes of the linear and non-linear response coefficients observed in azimuthal momentum anisotropies with a large mean free path of the order of the system size in peripheral ($\sim 50 \%$ centrality) PbPb or central pPb collisions. The shear viscosity to entropy density ratio $\eta/s$ of such a transport theory is approximately an order of magnitude larger than that of an almost perfect fluid. The phenomenological success of transport simulations thus challenges the perfect fluid paradigm of ultra-relativistic nucleus-nucleus and hadron-nucleus collisions. |
---|