Cargando…
Neutrinoless double-beta decay with massive scalar emission
Searches for neutrino-less double-beta decay ( 0ν2β ) place an important constraint on models where light fields beyond the Standard Model participate in the neutrino mass mechanism. While 0ν2β experimental collaborations often consider various massless majoron models, including various forms of maj...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2018.08.022 http://cds.cern.ch/record/2308283 |
_version_ | 1780957700217110528 |
---|---|
author | Blum, Kfir Nir, Yosef Shavit, Michal |
author_facet | Blum, Kfir Nir, Yosef Shavit, Michal |
author_sort | Blum, Kfir |
collection | CERN |
description | Searches for neutrino-less double-beta decay ( 0ν2β ) place an important constraint on models where light fields beyond the Standard Model participate in the neutrino mass mechanism. While 0ν2β experimental collaborations often consider various massless majoron models, including various forms of majoron couplings and multi-majoron final-state processes, none of these searches considered the scenario where the “majoron” ϕ is not massless, mϕ∼ MeV, of the same order as the Q -value of the 0ν2β reaction. We consider this parameter region and estimate 0ν2βϕ constraints for mϕ of order MeV. The constraints are affected not only by kinematical phase space suppression but also by a change in the signal to background ratio charachterizing the search. As a result, 0ν2βϕ constraints for mϕ>0 diminish significantly below the reaction threshold. This has phenomenological implications, which we illustrate focusing on high-energy neutrino telescopes. The spectral shape of high-energy astrophysical neutrinos could exhibit features due to resonant νν→ϕ→νν scattering. Such features fall within the sensitivity range of IceCube-like experiments, if mϕ is of order MeV, making 0ν2βϕ a key complimentary laboratory constraint on the scenario. Our results motivate a dedicated analysis by 0ν2β collaborations, analogous to the dedicated analyses targeting massless majoron models. |
id | cern-2308283 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
record_format | invenio |
spelling | cern-23082832021-05-04T07:18:06Zdoi:10.1016/j.physletb.2018.08.022http://cds.cern.ch/record/2308283engBlum, KfirNir, YosefShavit, MichalNeutrinoless double-beta decay with massive scalar emissionhep-phParticle Physics - PhenomenologySearches for neutrino-less double-beta decay ( 0ν2β ) place an important constraint on models where light fields beyond the Standard Model participate in the neutrino mass mechanism. While 0ν2β experimental collaborations often consider various massless majoron models, including various forms of majoron couplings and multi-majoron final-state processes, none of these searches considered the scenario where the “majoron” ϕ is not massless, mϕ∼ MeV, of the same order as the Q -value of the 0ν2β reaction. We consider this parameter region and estimate 0ν2βϕ constraints for mϕ of order MeV. The constraints are affected not only by kinematical phase space suppression but also by a change in the signal to background ratio charachterizing the search. As a result, 0ν2βϕ constraints for mϕ>0 diminish significantly below the reaction threshold. This has phenomenological implications, which we illustrate focusing on high-energy neutrino telescopes. The spectral shape of high-energy astrophysical neutrinos could exhibit features due to resonant νν→ϕ→νν scattering. Such features fall within the sensitivity range of IceCube-like experiments, if mϕ is of order MeV, making 0ν2βϕ a key complimentary laboratory constraint on the scenario. Our results motivate a dedicated analysis by 0ν2β collaborations, analogous to the dedicated analyses targeting massless majoron models.Searches for neutrino-less double-beta decay ($0\nu2\beta$) place an important constraint on models where light fields beyond the Standard Model participate in the neutrino mass mechanism. While $0\nu2\beta$ experimental collaborations often consider various massless majoron models, including various forms of majoron couplings and multi-majoron final-state processes, none of these searches considered the scenario where the "majoron" $\phi$ is not massless, $m_\phi\sim$~MeV, of the same order as the $Q$-value of the $0\nu2\beta$ reaction. We consider this parameter region and estimate $0\nu2\beta\phi$ constraints for $m_\phi$ of order MeV. The constraints are affected not only by kinematical phase space suppression but also by a change in the signal to background ratio characterizing the search. As a result, $0\nu2\beta\phi$ constraints for $m_\phi>0$ diminish significantly below the reaction threshold. This has phenomenological implications, which we illustrate focusing on high-energy neutrino telescopes. Our results motivate a dedicated analysis by $0\nu2\beta$ collaborations, analogous to the dedicated analyses targeting massless majoron models.arXiv:1802.08019oai:cds.cern.ch:23082832018-02-22 |
spellingShingle | hep-ph Particle Physics - Phenomenology Blum, Kfir Nir, Yosef Shavit, Michal Neutrinoless double-beta decay with massive scalar emission |
title | Neutrinoless double-beta decay with massive scalar emission |
title_full | Neutrinoless double-beta decay with massive scalar emission |
title_fullStr | Neutrinoless double-beta decay with massive scalar emission |
title_full_unstemmed | Neutrinoless double-beta decay with massive scalar emission |
title_short | Neutrinoless double-beta decay with massive scalar emission |
title_sort | neutrinoless double-beta decay with massive scalar emission |
topic | hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1016/j.physletb.2018.08.022 http://cds.cern.ch/record/2308283 |
work_keys_str_mv | AT blumkfir neutrinolessdoublebetadecaywithmassivescalaremission AT niryosef neutrinolessdoublebetadecaywithmassivescalaremission AT shavitmichal neutrinolessdoublebetadecaywithmassivescalaremission |