Cargando…
The diagrammatic coaction and the algebraic structure of cut Feynman integrals
We present a new formula for the coaction of a large class of integrals. When applied to one-loop (cut) Feynman integrals, it can be given a diagrammatic representation purely in terms of pinches and cuts of the edges of the graph. The coaction encodes the algebraic structure of these integrals, and...
Autores principales: | Abreu, Samuel, Britto, Ruth, Duhr, Claude, Gardi, Einan |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.290.0002 http://cds.cern.ch/record/2308774 |
Ejemplares similares
-
The algebraic structure of cut Feynman integrals and the diagrammatic coaction
por: Abreu, Samuel, et al.
Publicado: (2017) -
Diagrammatic Coaction of Two-Loop Feynman Integrals
por: Abreu, Samuel, et al.
Publicado: (2019) -
Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case
por: Abreu, Samuel, et al.
Publicado: (2017) -
The diagrammatic coaction beyond one loop
por: Abreu, Samuel, et al.
Publicado: (2021) -
Coaction for Feynman integrals and diagrams
por: Abreu, Samuel, et al.
Publicado: (2018)