Cargando…

Training and validation of the ATLAS pixel clustering neural networks

The high centre-of-mass energy of the LHC gives rise to dense environments, such as the core of high-pT jets, in which the charge clusters left by ionising particles in the silicon sensors of the pixel detector can merge, compromising the tracking and vertexing efficiency. To recover optimal perform...

Descripción completa

Detalles Bibliográficos
Autor principal: The ATLAS collaboration
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:http://cds.cern.ch/record/2309474
Descripción
Sumario:The high centre-of-mass energy of the LHC gives rise to dense environments, such as the core of high-pT jets, in which the charge clusters left by ionising particles in the silicon sensors of the pixel detector can merge, compromising the tracking and vertexing efficiency. To recover optimal performance, a neural network-based approach is used to separate clusters originating from single and multiple particles and to estimate all hit positions within clusters. This note presents the training strategy employed and a set of benchmark performance measurements on a Monte Carlo sample of high-pT dijet events.