Cargando…
Training and validation of the ATLAS pixel clustering neural networks
The high centre-of-mass energy of the LHC gives rise to dense environments, such as the core of high-pT jets, in which the charge clusters left by ionising particles in the silicon sensors of the pixel detector can merge, compromising the tracking and vertexing efficiency. To recover optimal perform...
Autor principal: | The ATLAS collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2309474 |
Ejemplares similares
-
Robustness of the Artificial Neural Networks Used for Clustering in the ATLAS Pixel Detector
por: The ATLAS collaboration
Publicado: (2015) -
Measurement of performance of the pixel neural network clustering algorithm of the ATLAS experiment at $\sqrt{s}$ = 13 TeV
por: The ATLAS collaboration
Publicado: (2015) -
Implementation and performance of the ATLAS pixel clustering neural networks
por: Gagnon, Louis-Guillaume
Publicado: (2018) -
Implementation and performance of the ATLAS pixel clustering neural networks
por: Gagnon, Louis-Guillaume
Publicado: (2018) -
Robustness of the ATLAS pixel clustering neural network algorithm
por: Sidebo, Edvin
Publicado: (2016)