Cargando…

Quantum space: loop quantum gravity and the search for the structure of space, time, and the universe

Today we are blessed with two extraordinarily successful theories of physics. The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discov...

Descripción completa

Detalles Bibliográficos
Autor principal: Baggott, Jim
Lenguaje:eng
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:http://cds.cern.ch/record/2309517
_version_ 1780957782240919552
author Baggott, Jim
author_facet Baggott, Jim
author_sort Baggott, Jim
collection CERN
description Today we are blessed with two extraordinarily successful theories of physics. The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discovery of gravitational waves at the LIGO observatory in the US (and then Virgo, in Italy) is only the most recent of this theory's many triumphs. The second is quantum mechanics. This theory describes the properties and behaviour of matter and radiation at their smallest scales. It is the basis for the standard model of particle physics, which builds up all the visible constituents of the universe out of collections of quarks, electrons and force-carrying particles such as photons. The discovery of the Higgs boson at CERN in Geneva is only the most recent of this theory's many triumphs. But, while they are both highly successful, these two structures leave a lot of important questions unanswered. They are also based on two different interpretations of space and time, and are therefore fundamentally incompatible. We have two descriptions but, as far as we know, we've only ever had one universe. What we need is a quantum theory of gravity. Approaches to formulating such a theory have primarily followed two paths. One leads to String Theory, which has for long been fashionable, and about which much has been written. But String Theory has become mired in problems. In this book, Jim Baggott describes "the road less travelled": an approach which takes relativity as its starting point, and leads to a structure called Loop Quantum Gravity. Baggott tells the story through the careers and pioneering work of two of the theory's most prominent contributors, Lee Smolin and Carlo Rovelli. Combining clear discussions of both quantum theory and general relativity, this book offers one of the first efforts to explain the new quantum theory of space and time.
id cern-2309517
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
publisher Oxford University Press
record_format invenio
spelling cern-23095172021-04-21T18:52:41Zhttp://cds.cern.ch/record/2309517engBaggott, JimQuantum space: loop quantum gravity and the search for the structure of space, time, and the universeGeneral Relativity and CosmologyToday we are blessed with two extraordinarily successful theories of physics. The first is Albert Einstein's general theory of relativity, which describes the large-scale behaviour of matter in a curved spacetime. This theory is the basis for the standard model of big bang cosmology. The discovery of gravitational waves at the LIGO observatory in the US (and then Virgo, in Italy) is only the most recent of this theory's many triumphs. The second is quantum mechanics. This theory describes the properties and behaviour of matter and radiation at their smallest scales. It is the basis for the standard model of particle physics, which builds up all the visible constituents of the universe out of collections of quarks, electrons and force-carrying particles such as photons. The discovery of the Higgs boson at CERN in Geneva is only the most recent of this theory's many triumphs. But, while they are both highly successful, these two structures leave a lot of important questions unanswered. They are also based on two different interpretations of space and time, and are therefore fundamentally incompatible. We have two descriptions but, as far as we know, we've only ever had one universe. What we need is a quantum theory of gravity. Approaches to formulating such a theory have primarily followed two paths. One leads to String Theory, which has for long been fashionable, and about which much has been written. But String Theory has become mired in problems. In this book, Jim Baggott describes "the road less travelled": an approach which takes relativity as its starting point, and leads to a structure called Loop Quantum Gravity. Baggott tells the story through the careers and pioneering work of two of the theory's most prominent contributors, Lee Smolin and Carlo Rovelli. Combining clear discussions of both quantum theory and general relativity, this book offers one of the first efforts to explain the new quantum theory of space and time.The greatest challenge for physics is to combine its two most successful theories: general relativity and quantum mechanics. The resulting quantum theory of gravity would explain the universe across all scales. Much has been said about the approach based on string theory. Here, Jim Baggott describes its powerful rival: Loop Quantum Gravity.Oxford University Pressoai:cds.cern.ch:23095172018-11-01
spellingShingle General Relativity and Cosmology
Baggott, Jim
Quantum space: loop quantum gravity and the search for the structure of space, time, and the universe
title Quantum space: loop quantum gravity and the search for the structure of space, time, and the universe
title_full Quantum space: loop quantum gravity and the search for the structure of space, time, and the universe
title_fullStr Quantum space: loop quantum gravity and the search for the structure of space, time, and the universe
title_full_unstemmed Quantum space: loop quantum gravity and the search for the structure of space, time, and the universe
title_short Quantum space: loop quantum gravity and the search for the structure of space, time, and the universe
title_sort quantum space: loop quantum gravity and the search for the structure of space, time, and the universe
topic General Relativity and Cosmology
url http://cds.cern.ch/record/2309517
work_keys_str_mv AT baggottjim quantumspaceloopquantumgravityandthesearchforthestructureofspacetimeandtheuniverse