Cargando…
Targeted learning in data science: causal inference for complex longitudinal studies
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by usin...
Autores principales: | van der Laan, Mark J, Rose, Sherri |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-65304-4 http://cds.cern.ch/record/2311300 |
Ejemplares similares
-
Unified methods for censored longitudinal data and causality
por: Laan, Mark J, et al.
Publicado: (2003) -
Causality: models, reasoning and inference
por: Pearl, Judea
Publicado: (2009) -
Causal inference in statistics: a primer
por: Pearl, Judea, et al.
Publicado: (2016) -
Statistical methods for dynamic treatment regimes: reinforcement learning, causal inference, and personalized medicine
por: Chakraborty, Bibhas, et al.
Publicado: (2013) -
Statistical causal inferences and their applications in public health research
por: He, Hua, et al.
Publicado: (2016)