Cargando…
Convolutional Neural Network for Track Seed Filtering at the CMS HLT
<!--HTML-->Collider will constantly bring nominal luminosity increase, with the ultimate goal of reaching a peak luminosity of $5 · 10^{34} cm^{−2} s^{−1}$ for ATLAS and CMS experiments planned for the High Luminosity LHC (HL-LHC) upgrade. This rise in luminosity will directly result in an inc...
Autor principal: | Di Florio, Adriano |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2312212 |
Ejemplares similares
-
Convolutional Neural Network for Track Seed Filtering at the CMS High-Level Trigger
por: Di Florio, Adriano, et al.
Publicado: (2018) -
Deep Convolutional Networks for Event Reconstruction and Particle Tagging on NOvA and DUNE
por: Psihas, Fernanda
Publicado: (2017) -
Interpreting Deep Neural Networks and their Predictions
por: Samek, Wojciech
Publicado: (2018) -
Recursive Neural Networks in Quark/Gluon Tagging
por: Cheng, Taoli
Publicado: (2018) -
Top tagging with deep neural networks [Vidyo]
por: Pearkes, Jannicke
Publicado: (2017)