Cargando…
Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators
<!--HTML-->In this contribution, we present a method for tuning perturbative parameters in Monte Carlo simulation using a classifier loss in high dimensions. We use an LSTM trained on the radiation pattern inside jets to learn the parameters of the final state shower in the Pythia Monte Carlo...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2312417 |
_version_ | 1780957971023396864 |
---|---|
author | Paganini, Michela |
author_facet | Paganini, Michela |
author_sort | Paganini, Michela |
collection | CERN |
description | <!--HTML-->In this contribution, we present a method for tuning perturbative parameters in Monte Carlo simulation using a classifier loss in high dimensions. We use an LSTM trained on the radiation pattern inside jets to learn the parameters of the final state shower in the Pythia Monte Carlo generator. This represents a step forward compared to unidimensional distributional template-matching methods. |
id | cern-2312417 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
record_format | invenio |
spelling | cern-23124172022-11-02T22:34:03Zhttp://cds.cern.ch/record/2312417engPaganini, MichelaAdversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators2nd IML Machine Learning WorkshopMachine Learning<!--HTML-->In this contribution, we present a method for tuning perturbative parameters in Monte Carlo simulation using a classifier loss in high dimensions. We use an LSTM trained on the radiation pattern inside jets to learn the parameters of the final state shower in the Pythia Monte Carlo generator. This represents a step forward compared to unidimensional distributional template-matching methods.oai:cds.cern.ch:23124172018 |
spellingShingle | Machine Learning Paganini, Michela Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators |
title | Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators |
title_full | Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators |
title_fullStr | Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators |
title_full_unstemmed | Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators |
title_short | Adversarial Tuning of Perturbative Parameters in Non-Differentiable Physics Simulators |
title_sort | adversarial tuning of perturbative parameters in non-differentiable physics simulators |
topic | Machine Learning |
url | http://cds.cern.ch/record/2312417 |
work_keys_str_mv | AT paganinimichela adversarialtuningofperturbativeparametersinnondifferentiablephysicssimulators AT paganinimichela 2ndimlmachinelearningworkshop |