Cargando…
What is the machine learning.
<!--HTML-->Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. In this talk, I explore a procedure for identifying combinations of variables -- aided by physical intuition -- that can discriminat...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2312435 |
Sumario: | <!--HTML-->Applications of machine learning tools to problems of physical interest are often criticized for producing sensitivity at the expense of transparency. In this talk, I explore a procedure for identifying combinations of variables -- aided by physical intuition -- that can discriminate signal from background. Weights are introduced to smooth away the features in a given variable(s). New networks are then trained on this modified data. Observed decreases in sensitivity diagnose the variable's discriminating power. Planing also allows the investigation of the linear versus non-linear nature of the boundaries between signal and background. I will demonstrate these features in both an easy to understand toy model and an idealized LHC resonance scenario. |
---|