Cargando…
Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series
We present a generalization of the symbol calculus from ordinary multiple polylogarithms to their elliptic counterparts. Our formalism is based on a special case of a coaction on large classes of periods that is applied in particular to elliptic polylogarithms and iterated integrals of modular forms...
Autores principales: | Broedel, Johannes, Duhr, Claude, Dulat, Falko, Penante, Brenda, Tancredi, Lorenzo |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP08(2018)014 http://cds.cern.ch/record/2313164 |
Ejemplares similares
-
Elliptic polylogarithms and Feynman parameter integrals
por: Broedel, Johannes, et al.
Publicado: (2019) -
Elliptic polylogarithms and two-loop Feynman integrals
por: Broedel, Johannes, et al.
Publicado: (2018) -
Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism
por: Broedel, Johannes, et al.
Publicado: (2017) -
Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral
por: Broedel, Johannes, et al.
Publicado: (2017) -
Clean single-valued polylogarithms
por: Charlton, Steven, et al.
Publicado: (2021)