Cargando…
HLS4ML: deploying deep learning on FPGAs for L1 trigger and Data Acquisition
<!--HTML--><p>Machine learning is becoming ubiquitous across HEP. There is great potential to improve trigger and DAQ performances with it. However, the exploration of such techniques within the field in low latency/power FPGAs has just begun. We present HLS4ML, a user-friendly software,...
Autor principal: | Ngadiuba, Jennifer |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2315491 |
Ejemplares similares
-
hls4ml: deploying deep learning on FPGAs for L1 trigger and Data Acquisition
por: Duarte, Javier, et al.
Publicado: (2019) -
Fast convolutional neural networks on FPGAs with hls4ml
por: Aarrestad, Thea, et al.
Publicado: (2021) -
Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML
por: Loncar, Vladimir, et al.
Publicado: (2021) -
Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml
por: Ghielmetti, Nicolò, et al.
Publicado: (2022) -
TrackML : The High Energy Physics Tracking Challenge
por: Rousseau, David
Publicado: (2018)