Cargando…
Evaluation of an IP Fabric network architecture for CERN's data center
CERN has a large-scale data center with over 11500 servers used to analyze massive amounts of data acquired from the physics experiments and to provide IT services to workers. Its current network architecture is based on the classic three-tier design and it uses both IPv4 and IPv6. Between the acces...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2315700 |
Sumario: | CERN has a large-scale data center with over 11500 servers used to analyze massive amounts of data acquired from the physics experiments and to provide IT services to workers. Its current network architecture is based on the classic three-tier design and it uses both IPv4 and IPv6. Between the access and aggregation layers the traffic is switched in Layer 2, while between aggregation and core it is routed using dual-stack OSPF. A new architecture is needed to increase redundancy and to provide virtual machine mobility and traffic isolation. The state-of-the-art architecture IP Fabric with EVPN is evaluated as a possible solution. The evaluation comprises a study of different features and options, including BGP table scalability and autonomous system number distributions. The proposed solution contains eBGP as the routing protocol, a route control policy, fast convergence mechanisms and an EVPN overlay with iBGP routing and VXLAN encapsulation. The solution is tested in the lab with the network equipment currently used in the data center. The results are satisfactory, however the equipment is found to lack the necessary resources to implement this architecture at a large scale. |
---|