Cargando…
Perturbed gradient flow trees and a∞-algebra structures in morse cohomology
This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of M...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-76584-6 http://cds.cern.ch/record/2316213 |
_version_ | 1780958209779957760 |
---|---|
author | Mescher, Stephan |
author_facet | Mescher, Stephan |
author_sort | Mescher, Stephan |
collection | CERN |
description | This book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory. |
id | cern-2316213 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2018 |
publisher | Springer |
record_format | invenio |
spelling | cern-23162132021-04-21T18:50:58Zdoi:10.1007/978-3-319-76584-6http://cds.cern.ch/record/2316213engMescher, StephanPerturbed gradient flow trees and a∞-algebra structures in morse cohomologyMathematical Physics and MathematicsThis book elaborates on an idea put forward by M. Abouzaid on equipping the Morse cochain complex of a smooth Morse function on a closed oriented manifold with the structure of an A∞-algebra by means of perturbed gradient flow trajectories. This approach is a variation on K. Fukaya’s definition of Morse-A∞-categories for closed oriented manifolds involving families of Morse functions. To make A∞-structures in Morse theory accessible to a broader audience, this book provides a coherent and detailed treatment of Abouzaid’s approach, including a discussion of all relevant analytic notions and results, requiring only a basic grasp of Morse theory. In particular, no advanced algebra skills are required, and the perturbation theory for Morse trajectories is completely self-contained. In addition to its relevance for finite-dimensional Morse homology, this book may be used as a preparation for the study of Fukaya categories in symplectic geometry. It will be of interest to researchers in mathematics (geometry and topology), and to graduate students in mathematics with a basic command of the Morse theory.Springeroai:cds.cern.ch:23162132018 |
spellingShingle | Mathematical Physics and Mathematics Mescher, Stephan Perturbed gradient flow trees and a∞-algebra structures in morse cohomology |
title | Perturbed gradient flow trees and a∞-algebra structures in morse cohomology |
title_full | Perturbed gradient flow trees and a∞-algebra structures in morse cohomology |
title_fullStr | Perturbed gradient flow trees and a∞-algebra structures in morse cohomology |
title_full_unstemmed | Perturbed gradient flow trees and a∞-algebra structures in morse cohomology |
title_short | Perturbed gradient flow trees and a∞-algebra structures in morse cohomology |
title_sort | perturbed gradient flow trees and a∞-algebra structures in morse cohomology |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-76584-6 http://cds.cern.ch/record/2316213 |
work_keys_str_mv | AT mescherstephan perturbedgradientflowtreesandaalgebrastructuresinmorsecohomology |