Cargando…
Fast inference of deep neural networks in FPGAs for particle physics
Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics capabilities through the improvement of the real-time event processing techniques. Machine learning methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a whole. However,...
Autores principales: | Duarte, Javier, Han, Song, Harris, Philip, Jindariani, Sergo, Kreinar, Edward, Kreis, Benjamin, Ngadiuba, Jennifer, Pierini, Maurizio, Rivera, Ryan, Tran, Nhan, Wu, Zhenbin |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/13/07/P07027 http://cds.cern.ch/record/2316331 |
Ejemplares similares
-
Fast convolutional neural networks on FPGAs with hls4ml
por: Aarrestad, Thea, et al.
Publicado: (2021) -
Ultra-low latency recurrent neural network inference on FPGAs for physics applications with hls4ml
por: Khoda, Elham E., et al.
Publicado: (2022) -
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics
por: Iiyama, Yutaro, et al.
Publicado: (2020) -
Image-based model parameter optimisation using Model-Assisted Generative Adversarial Networks
por: Alonso-Monsalve, Saúl, et al.
Publicado: (2018) -
Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs
por: Heintz, Aneesh, et al.
Publicado: (2020)