Cargando…

Ruling out Critical Higgs Inflation?

We consider critical Higgs inflation, namely, Higgs inflation with a rising inflection point at smaller field values than those of the plateau induced by the nonminimal coupling to gravity. It has been proposed that such a configuration is compatible with the present CMB observational constraints on...

Descripción completa

Detalles Bibliográficos
Autor principal: Masina, Isabella
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.98.043536
http://cds.cern.ch/record/2316797
_version_ 1780958263631675392
author Masina, Isabella
author_facet Masina, Isabella
author_sort Masina, Isabella
collection CERN
description We consider critical Higgs inflation, namely, Higgs inflation with a rising inflection point at smaller field values than those of the plateau induced by the nonminimal coupling to gravity. It has been proposed that such a configuration is compatible with the present CMB observational constraints on inflation and also with primordial black hole production, accounting for the totality or a fraction of the observed dark matter. We study the model while taking into account the next-to-next-to-leading order (NNLO) corrections to the Higgs effective potential: such corrections are extremely important to reduce the theoretical error associated to the calculation. We find that, in the 3σ window for the relevant low energy parameters, which are the strong coupling and the Higgs mass (the top mass follows by requiring an inflection point), the potential at the inflection point is so large (and so is the Hubble constant during inflation) that the present bound on the tensor-to-scalar ratio is violated. The model is viable only when allowing the strong coupling to take its upper 3–4σ value. In our opinion, this tension shows that the model of critical Higgs inflation is likely to be not viable: neither inflation nor black holes as dark matter can be originated in this version of the model.
id cern-2316797
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
record_format invenio
spelling cern-23167972023-10-04T07:37:19Zdoi:10.1103/PhysRevD.98.043536http://cds.cern.ch/record/2316797engMasina, IsabellaRuling out Critical Higgs Inflation?hep-phParticle Physics - PhenomenologyWe consider critical Higgs inflation, namely, Higgs inflation with a rising inflection point at smaller field values than those of the plateau induced by the nonminimal coupling to gravity. It has been proposed that such a configuration is compatible with the present CMB observational constraints on inflation and also with primordial black hole production, accounting for the totality or a fraction of the observed dark matter. We study the model while taking into account the next-to-next-to-leading order (NNLO) corrections to the Higgs effective potential: such corrections are extremely important to reduce the theoretical error associated to the calculation. We find that, in the 3σ window for the relevant low energy parameters, which are the strong coupling and the Higgs mass (the top mass follows by requiring an inflection point), the potential at the inflection point is so large (and so is the Hubble constant during inflation) that the present bound on the tensor-to-scalar ratio is violated. The model is viable only when allowing the strong coupling to take its upper 3–4σ value. In our opinion, this tension shows that the model of critical Higgs inflation is likely to be not viable: neither inflation nor black holes as dark matter can be originated in this version of the model.We consider critical Higgs inflation, namely Higgs inflation with a rising inflection point at smaller field values than those of the plateau induced by the non-minimal coupling to gravity. It has been proposed that such configuration is compatible with the present CMB observational constraints on inflation, and also with primordial black hole production accounting for the totality or a fraction of the observed dark matter. We study the model taking into account the NNLO corrections to the Higgs effective potential: such corrections are extremely important to reduce the theoretical error associated to the calculation. We find that, in the 3 sigma window for the relevant low energy parameters, which are the strong coupling and the Higgs mass (the top mass follows by requiring an inflection point), the potential at the inflection point is so large (and so is the Hubble constant during inflation) that the present bound on the tensor-to-scalar ratio is violated. The model is viable only allowing the strong coupling to take its upper 3-4 sigma value. In our opinion, this tension shows that the model of critical Higgs inflation is likely to be not viable: neither inflation nor black holes as dark matter can be originated in this version of the model.arXiv:1805.02160CP3-ORIGINS-2018-016CERN-TH-2018-111CP3-Origins-2018-016DNRF90oai:cds.cern.ch:23167972018-05-06
spellingShingle hep-ph
Particle Physics - Phenomenology
Masina, Isabella
Ruling out Critical Higgs Inflation?
title Ruling out Critical Higgs Inflation?
title_full Ruling out Critical Higgs Inflation?
title_fullStr Ruling out Critical Higgs Inflation?
title_full_unstemmed Ruling out Critical Higgs Inflation?
title_short Ruling out Critical Higgs Inflation?
title_sort ruling out critical higgs inflation?
topic hep-ph
Particle Physics - Phenomenology
url https://dx.doi.org/10.1103/PhysRevD.98.043536
http://cds.cern.ch/record/2316797
work_keys_str_mv AT masinaisabella rulingoutcriticalhiggsinflation