Cargando…

Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System

Crab crossing is essential for high-luminosity colliders. The high-luminosity Large Hadron Collider (HL-LHC) will equip one of its interaction points (IP1) with double-quarter wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting rf cavities that stands out for its compactness and...

Descripción completa

Detalles Bibliográficos
Autores principales: Verdú-Andrés, S., Artoos, K., Belomestnykh, S., Ben-Zvi, I., Boulware, C., Burt, G., Calaga, R., Capatina, O., Carra, F., Castilla, A., Clemens, W., Grimm, T., Kuder, N., Leuxe, R., Li, Z., McEwen, E.A., Park, H., Powers, T., Ratti, A., Shipman, N., Skaritka, J., Wu, Q., Xiao, B.P., Yancey, J., Zanoni, C.
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevAccelBeams.21.082002
http://cds.cern.ch/record/2319841
_version_ 1780958418593382400
author Verdú-Andrés, S.
Artoos, K.
Belomestnykh, S.
Ben-Zvi, I.
Boulware, C.
Burt, G.
Calaga, R.
Capatina, O.
Carra, F.
Castilla, A.
Clemens, W.
Grimm, T.
Kuder, N.
Leuxe, R.
Li, Z.
McEwen, E.A.
Park, H.
Powers, T.
Ratti, A.
Shipman, N.
Skaritka, J.
Wu, Q.
Xiao, B.P.
Yancey, J.
Zanoni, C.
author_facet Verdú-Andrés, S.
Artoos, K.
Belomestnykh, S.
Ben-Zvi, I.
Boulware, C.
Burt, G.
Calaga, R.
Capatina, O.
Carra, F.
Castilla, A.
Clemens, W.
Grimm, T.
Kuder, N.
Leuxe, R.
Li, Z.
McEwen, E.A.
Park, H.
Powers, T.
Ratti, A.
Shipman, N.
Skaritka, J.
Wu, Q.
Xiao, B.P.
Yancey, J.
Zanoni, C.
author_sort Verdú-Andrés, S.
collection CERN
description Crab crossing is essential for high-luminosity colliders. The high-luminosity Large Hadron Collider (HL-LHC) will equip one of its interaction points (IP1) with double-quarter wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting rf cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A proof-of-principle (POP) DQW cavity was limited by quench at 4.6 MV. This paper describes a new, highly optimized cavity, designated the DQW SPS series, which satisfies dimensional, cryogenic, manufacturing, and impedance requirements for beam tests at the Super Proton Synchrotron (SPS) and operation in the LHC. Two prototypes of this DQW SPS series were fabricated by U.S. industry and cold tested after following a conventional superconducting radio-frequency surface treatment. Both units outperformed the POP cavity, reaching a deflecting voltage of 5.3–5.9 MV. This voltage—the highest reached by a DQW cavity—is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0 MV with a sufficient margin. This paper covers fabrication, surface preparation, and cryogenic rf test results and implications.
id cern-2319841
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2018
record_format invenio
spelling cern-23198412023-03-25T03:19:24Zdoi:10.1103/PhysRevAccelBeams.21.082002http://cds.cern.ch/record/2319841engVerdú-Andrés, S.Artoos, K.Belomestnykh, S.Ben-Zvi, I.Boulware, C.Burt, G.Calaga, R.Capatina, O.Carra, F.Castilla, A.Clemens, W.Grimm, T.Kuder, N.Leuxe, R.Li, Z.McEwen, E.A.Park, H.Powers, T.Ratti, A.Shipman, N.Skaritka, J.Wu, Q.Xiao, B.P.Yancey, J.Zanoni, C.Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity SystemDesign and vertical tests of double-quarter wave cavity prototypes for the high-luminosity LHC crab cavity systemphysics.acc-phAccelerators and Storage RingsCrab crossing is essential for high-luminosity colliders. The high-luminosity Large Hadron Collider (HL-LHC) will equip one of its interaction points (IP1) with double-quarter wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting rf cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A proof-of-principle (POP) DQW cavity was limited by quench at 4.6 MV. This paper describes a new, highly optimized cavity, designated the DQW SPS series, which satisfies dimensional, cryogenic, manufacturing, and impedance requirements for beam tests at the Super Proton Synchrotron (SPS) and operation in the LHC. Two prototypes of this DQW SPS series were fabricated by U.S. industry and cold tested after following a conventional superconducting radio-frequency surface treatment. Both units outperformed the POP cavity, reaching a deflecting voltage of 5.3–5.9 MV. This voltage—the highest reached by a DQW cavity—is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0 MV with a sufficient margin. This paper covers fabrication, surface preparation, and cryogenic rf test results and implications.Crab crossing is essential for high-luminosity colliders. The High Luminosity Large Hadron Collider (HL-LHC) will equip one of its Interaction Points (IP1) with Double-Quarter Wave (DQW) crab cavities. A DQW cavity is a new generation of deflecting RF cavities that stands out for its compactness and broad frequency separation between fundamental and first high-order modes. The deflecting kick is provided by its fundamental mode. Each HL-LHC DQW cavity shall provide a nominal deflecting voltage of 3.4 MV, although up to 5.0 MV may be required. A Proof-of-Principle (PoP) DQW cavity was limited by quench at 4.6 MV. This paper describes a new, highly optimized cavity, designated DQW SPS-series, which satisfies dimensional, cryogenic, manufacturing and impedance requirements for beam tests at SPS and operation in LHC. Two prototypes of this DQW SPS-series were fabricated by US industry and cold tested after following conventional SRF surface treatment. Both units outperformed the PoP cavity, reaching a deflecting voltage of 5.3-5.9 MV. This voltage - the highest reached by a DQW cavity - is well beyond the nominal voltage of 3.4 MV and may even operate at the ultimate voltage of 5.0MVwith sufficient margin. This paper covers fabrication, surface preparation and cryogenic RF test results and implications.arXiv:1805.08123FERMILAB-PUB-18-207-TDoai:cds.cern.ch:23198412018-05-21
spellingShingle physics.acc-ph
Accelerators and Storage Rings
Verdú-Andrés, S.
Artoos, K.
Belomestnykh, S.
Ben-Zvi, I.
Boulware, C.
Burt, G.
Calaga, R.
Capatina, O.
Carra, F.
Castilla, A.
Clemens, W.
Grimm, T.
Kuder, N.
Leuxe, R.
Li, Z.
McEwen, E.A.
Park, H.
Powers, T.
Ratti, A.
Shipman, N.
Skaritka, J.
Wu, Q.
Xiao, B.P.
Yancey, J.
Zanoni, C.
Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System
title Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System
title_full Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System
title_fullStr Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System
title_full_unstemmed Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System
title_short Design and Vertical Tests of SPS-series Double-Quarter Wave (DQW) Cavity Prototypes for the HL-LHC Crab Cavity System
title_sort design and vertical tests of sps-series double-quarter wave (dqw) cavity prototypes for the hl-lhc crab cavity system
topic physics.acc-ph
Accelerators and Storage Rings
url https://dx.doi.org/10.1103/PhysRevAccelBeams.21.082002
http://cds.cern.ch/record/2319841
work_keys_str_mv AT verduandress designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT artoosk designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT belomestnykhs designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT benzvii designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT boulwarec designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT burtg designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT calagar designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT capatinao designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT carraf designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT castillaa designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT clemensw designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT grimmt designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT kudern designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT leuxer designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT liz designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT mcewenea designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT parkh designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT powerst designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT rattia designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT shipmann designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT skaritkaj designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT wuq designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT xiaobp designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT yanceyj designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT zanonic designandverticaltestsofspsseriesdoublequarterwavedqwcavityprototypesforthehllhccrabcavitysystem
AT verduandress designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT artoosk designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT belomestnykhs designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT benzvii designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT boulwarec designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT burtg designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT calagar designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT capatinao designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT carraf designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT castillaa designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT clemensw designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT grimmt designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT kudern designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT leuxer designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT liz designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT mcewenea designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT parkh designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT powerst designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT rattia designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT shipmann designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT skaritkaj designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT wuq designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT xiaobp designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT yanceyj designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem
AT zanonic designandverticaltestsofdoublequarterwavecavityprototypesforthehighluminositylhccrabcavitysystem