Cargando…
Astrophysical Signatures of Asymmetric Dark Matter Bound States
Nuggets—very large stable bound objects arising in the presence of a sufficiently attractive and long-range force and in the absence of a dark Coulomb force—are a smoking gun signature for asymmetric dark matter (ADM). The cosmology of ADM nuggets is both generic and unique: nuggets feature highly e...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.98.096001 http://cds.cern.ch/record/2320587 |
Sumario: | Nuggets—very large stable bound objects arising in the presence of a sufficiently attractive and long-range force and in the absence of a dark Coulomb force—are a smoking gun signature for asymmetric dark matter (ADM). The cosmology of ADM nuggets is both generic and unique: nuggets feature highly exothermic fusion processes, which can impact the shape of the core in galaxies, as well as give rise to rare dark star formation. We find, considering the properties of nuggets in a generic extended nuclear model with both attractive and repulsive forces, that self-interaction constraints place an upper bound on nugget masses at the freeze-out of synthesis in the ballpark of Mfo≲1016 GeV. We also show that indirect detection strongly constrains models where the scalar mediator binding the nuggets mixes with the Higgs. |
---|