Cargando…

Astrophysical Signatures of Asymmetric Dark Matter Bound States

Nuggets—very large stable bound objects arising in the presence of a sufficiently attractive and long-range force and in the absence of a dark Coulomb force—are a smoking gun signature for asymmetric dark matter (ADM). The cosmology of ADM nuggets is both generic and unique: nuggets feature highly e...

Descripción completa

Detalles Bibliográficos
Autores principales: Gresham, Moira I., Lou, Hou Keong, Zurek, Kathryn M.
Lenguaje:eng
Publicado: 2018
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.98.096001
http://cds.cern.ch/record/2320587
Descripción
Sumario:Nuggets—very large stable bound objects arising in the presence of a sufficiently attractive and long-range force and in the absence of a dark Coulomb force—are a smoking gun signature for asymmetric dark matter (ADM). The cosmology of ADM nuggets is both generic and unique: nuggets feature highly exothermic fusion processes, which can impact the shape of the core in galaxies, as well as give rise to rare dark star formation. We find, considering the properties of nuggets in a generic extended nuclear model with both attractive and repulsive forces, that self-interaction constraints place an upper bound on nugget masses at the freeze-out of synthesis in the ballpark of Mfo≲1016  GeV. We also show that indirect detection strongly constrains models where the scalar mediator binding the nuggets mixes with the Higgs.