Cargando…

The Pokrovski-Talapov phase transition and quantum groups

We show that the XY quantum chain in a magnetic field is invariant under a two parameter deformation of the $SU(1/1)$ superalgebra. One is led to an extension of the braid group and the Hecke algebras which reduce to the known ones when the two parameter coincide. The physical significance of the tw...

Descripción completa

Detalles Bibliográficos
Autores principales: Hinrichsen, Haye, Rittenberg, Vladimir
Lenguaje:eng
Publicado: 1992
Materias:
Acceso en línea:http://cds.cern.ch/record/234275
_version_ 1780884491146887168
author Hinrichsen, Haye
Rittenberg, Vladimir
author_facet Hinrichsen, Haye
Rittenberg, Vladimir
author_sort Hinrichsen, Haye
collection CERN
description We show that the XY quantum chain in a magnetic field is invariant under a two parameter deformation of the $SU(1/1)$ superalgebra. One is led to an extension of the braid group and the Hecke algebras which reduce to the known ones when the two parameter coincide. The physical significance of the two parameters is discussed. When both are equal to one, one gets a Pokrovski-Talapov phase transition. We also show that the representation theory of the quantum superalgebras indicates how to take the appropriate thermodynamical limits.
id cern-234275
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1992
record_format invenio
spelling cern-2342752023-10-12T05:34:53Zhttp://cds.cern.ch/record/234275engHinrichsen, HayeRittenberg, VladimirThe Pokrovski-Talapov phase transition and quantum groupsGeneral Theoretical PhysicsParticle Physics - TheoryWe show that the XY quantum chain in a magnetic field is invariant under a two parameter deformation of the $SU(1/1)$ superalgebra. One is led to an extension of the braid group and the Hecke algebras which reduce to the known ones when the two parameter coincide. The physical significance of the two parameters is discussed. When both are equal to one, one gets a Pokrovski-Talapov phase transition. We also show that the representation theory of the quantum superalgebras indicates how to take the appropriate thermodynamical limits.We show that the XY quantum chain in a magnetic field is invariant under a two parameter deformation of the $SU(1/1)$ superalgebra. One is led to an extension of the braid group and the Hecke algebras which reduce to the known ones when the two parameter coincide. The physical significance of the two parameters is discussed. When both are equal to one, one gets a Pokrovski-Talapov phase transition. We also show that the representation theory of the quantum superalgebras indicates how to take the appropriate thermodynamical limits.hep-th/9202082CERN-TH-6411-92CERN-TH-6411-92oai:cds.cern.ch:2342751992
spellingShingle General Theoretical Physics
Particle Physics - Theory
Hinrichsen, Haye
Rittenberg, Vladimir
The Pokrovski-Talapov phase transition and quantum groups
title The Pokrovski-Talapov phase transition and quantum groups
title_full The Pokrovski-Talapov phase transition and quantum groups
title_fullStr The Pokrovski-Talapov phase transition and quantum groups
title_full_unstemmed The Pokrovski-Talapov phase transition and quantum groups
title_short The Pokrovski-Talapov phase transition and quantum groups
title_sort pokrovski-talapov phase transition and quantum groups
topic General Theoretical Physics
Particle Physics - Theory
url http://cds.cern.ch/record/234275
work_keys_str_mv AT hinrichsenhaye thepokrovskitalapovphasetransitionandquantumgroups
AT rittenbergvladimir thepokrovskitalapovphasetransitionandquantumgroups
AT hinrichsenhaye pokrovskitalapovphasetransitionandquantumgroups
AT rittenbergvladimir pokrovskitalapovphasetransitionandquantumgroups