Cargando…
Meromorphic c = 24 conformal field theories
Modular invariant conformal field theories with just one primary field and central charge $c=24$ are considered. It has been shown previously that if the chiral algebra of such a theory contains spin-1 currents, it is either the Leech lattice CFT, or it contains a Kac-Moody sub-algebra with total ce...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BF02099044 http://cds.cern.ch/record/237159 |
Sumario: | Modular invariant conformal field theories with just one primary field and central charge $c=24$ are considered. It has been shown previously that if the chiral algebra of such a theory contains spin-1 currents, it is either the Leech lattice CFT, or it contains a Kac-Moody sub-algebra with total central charge 24. In this paper all meromorphic modular invariant combinations of the allowed Kac-Moody combinations are obtained. The result suggests the existence of 71 meromorphic $c=24$ theories, including the 41 that were already known. |
---|