Cargando…
Minimal models from W-constrained hierarchies via the Kontsevich-Miwa transform
A direct relation between the conformal formalism for 2d-quantum gravity and the W-constrained KP hierarchy is found, without the need to invoke intermediate matrix model technology. The Kontsevich-Miwa transform of the KP hierarchy is used to establish an identification between W constraints on the...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
1992
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(92)91951-5 http://cds.cern.ch/record/237171 |
Sumario: | A direct relation between the conformal formalism for 2d-quantum gravity and the W-constrained KP hierarchy is found, without the need to invoke intermediate matrix model technology. The Kontsevich-Miwa transform of the KP hierarchy is used to establish an identification between W constraints on the KP tau function and decoupling equations corresponding to Virasoro null vectors. The Kontsevich-Miwa transform maps the $W^{(l)}$-constrained KP hierarchy to the $(p^\prime,p)$ minimal model, with the tau function being given by the correlator of a product of (dressed) $(l,1)$ (or $(1,l)$) operators, provided the Miwa parameter $n_i$ and the free parameter (an abstract $bc$ spin) present in the constraints are expressed through the ratio $p^\prime/p$ and the level $l$. |
---|