Cargando…
The theory of dynamical random surfaces with extrinsic curvature
We analyze numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allow...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0550-3213(93)90074-Y http://cds.cern.ch/record/239622 |
_version_ | 1780884862236884992 |
---|---|
author | Ambjorn, Jan Irback, A. Jurkiewicz, J. Petersson, B. |
author_facet | Ambjorn, Jan Irback, A. Jurkiewicz, J. Petersson, B. |
author_sort | Ambjorn, Jan |
collection | CERN |
description | We analyze numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allows us to measure directly the string tension. We show that a phase transition from the crumpled phase to the smooth phase observed earlier for a spherical topology appears also for a toroidal surface for the same finite value of the coupling constant of the extrinsic curvature term. The phase transition is characterized by the vanishing of the string tension. We discuss the possible non-trivial continuum limit of the theory, when approaching the critical point. Numerically we find a value of the critical exponent $\n$ to be between .38 and .42. The specific heat, related to the extrinsic curvature term seems not to diverge (or diverge slower than logarithmically) at the critical point. |
id | cern-239622 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1993 |
record_format | invenio |
spelling | cern-2396222023-10-04T06:50:15Zdoi:10.1016/0550-3213(93)90074-Yhttp://cds.cern.ch/record/239622engAmbjorn, JanIrback, A.Jurkiewicz, J.Petersson, B.The theory of dynamical random surfaces with extrinsic curvatureGeneral Theoretical PhysicsWe analyze numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allows us to measure directly the string tension. We show that a phase transition from the crumpled phase to the smooth phase observed earlier for a spherical topology appears also for a toroidal surface for the same finite value of the coupling constant of the extrinsic curvature term. The phase transition is characterized by the vanishing of the string tension. We discuss the possible non-trivial continuum limit of the theory, when approaching the critical point. Numerically we find a value of the critical exponent $\n$ to be between .38 and .42. The specific heat, related to the extrinsic curvature term seems not to diverge (or diverge slower than logarithmically) at the critical point.We analyze numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allows us to measure directly the string tension. We show that a phase transition from the crumpled phase to the smooth phase observed earlier for a spherical topology appears also for a toroidal surface for the same finite value of the coupling constant of the extrinsic curvature term. The phase transition is characterized by the vanishing of the string tension. We discuss the possible non-trivial continuum limit of the theory, when approaching the critical point. Numerically we find a value of the critical exponent $\n$ to be between .38 and .42. The specific heat, related to the extrinsic curvature term seems not to diverge (or diverge slower than logarithmically) at the critical point.We analyze numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allows us to measure directly the string tension. We show that a phase transition from the crumpled phase to the smooth phase observed earlier for a spherical topology appears also for a toroidal surface for the same finite value of the coupling constant of the extrinsic curvature term. The phase transition is characterized by the vanishing of the string tension. We discuss the possible non-trivial continuum limit of the theory, when approaching the critical point. Numerically we find a value of the critical exponent $\n$ to be between .38 and .42. The specific heat, related to the extrinsic curvature term seems not to diverge (or diverge slower than logarithmically) at the critical point.We analyze numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allows us to measure directly the string tension. We show that a phase transition from the crumpled phase to the smooth phase observed earlier for a spherical topology appears also for a toroidal surface for the same finite value of the coupling constant of the extrinsic curvature term. The phase transition is characterized by the vanishing of the string tension. We discuss the possible non-trivial continuum limit of the theory, when approaching the critical point. Numerically we find a value of the critical exponent $\n$ to be between .38 and .42. The specific heat, related to the extrinsic curvature term seems not to diverge (or diverge slower than logarithmically) at the critical point.We analyse numerically the critical properties of a two-dimensional discretized random surface with extrinsic curvature embedded in a three-dimensional space. The use of the toroidal topology enables us to enforce the non-zero external extension without the necessity of defining a boundary and allows us to measure directly the string tension. We show that a phase transition from the crumpled phase to the smooth phase observed earlier for a spherical topology appears also for a toroidal surface for the same finite value of the coupling constant of the extrinsic curvature term. The phase transition is characterized by the vanishing of the string tension. We discuss the possible non-trivial continuum limit of the theory, when approaching the critical point. Numerically we find a value of the critical exponent ν to be between 0.38 and 0.42. The specific heat, related to the extrinsic curvature term seems not to diverge (or diverge slower than logarithmically) at the critical point.hep-lat/9207008NBI-HE-92-40NBI-HE-92-40oai:cds.cern.ch:2396221993 |
spellingShingle | General Theoretical Physics Ambjorn, Jan Irback, A. Jurkiewicz, J. Petersson, B. The theory of dynamical random surfaces with extrinsic curvature |
title | The theory of dynamical random surfaces with extrinsic curvature |
title_full | The theory of dynamical random surfaces with extrinsic curvature |
title_fullStr | The theory of dynamical random surfaces with extrinsic curvature |
title_full_unstemmed | The theory of dynamical random surfaces with extrinsic curvature |
title_short | The theory of dynamical random surfaces with extrinsic curvature |
title_sort | theory of dynamical random surfaces with extrinsic curvature |
topic | General Theoretical Physics |
url | https://dx.doi.org/10.1016/0550-3213(93)90074-Y http://cds.cern.ch/record/239622 |
work_keys_str_mv | AT ambjornjan thetheoryofdynamicalrandomsurfaceswithextrinsiccurvature AT irbacka thetheoryofdynamicalrandomsurfaceswithextrinsiccurvature AT jurkiewiczj thetheoryofdynamicalrandomsurfaceswithextrinsiccurvature AT peterssonb thetheoryofdynamicalrandomsurfaceswithextrinsiccurvature AT ambjornjan theoryofdynamicalrandomsurfaceswithextrinsiccurvature AT irbacka theoryofdynamicalrandomsurfaceswithextrinsiccurvature AT jurkiewiczj theoryofdynamicalrandomsurfaceswithextrinsiccurvature AT peterssonb theoryofdynamicalrandomsurfaceswithextrinsiccurvature |