Cargando…
Nonsymmetric gravity theories: inconsistencies and a cure
Motivated by the apparent dependence of string $\sigma$--models on the sum of spacetime metric and antisymmetric tensor fields, we reconsider gravity theories constructed from a nonsymmetric metric. We first show that all such "geometrical" theories homogeneous in second derivatives violat...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.47.1541 http://cds.cern.ch/record/242116 |
Sumario: | Motivated by the apparent dependence of string $\sigma$--models on the sum of spacetime metric and antisymmetric tensor fields, we reconsider gravity theories constructed from a nonsymmetric metric. We first show that all such "geometrical" theories homogeneous in second derivatives violate standard physical requirements: ghost-freedom, absence of algebraic inconsistencies or continuity of degree-of-freedom content. This no-go result applies in particular to the old unified theory of Einstein and its recent avatars. However, we find that the addition of nonderivative, ``cosmological'' terms formally restores consistency by giving a mass to the antisymmetric tensor field, thereby transmuting it into a fifth-force-like massive vector but with novel possible matter couplings. The resulting macroscopic models also exhibit ``van der Waals''-type gravitational effects, and may provide useful phenomenological foils to general relativity. |
---|