Cargando…
Symmetry breaking in the double-well hermitian matrix models
We study symmetry breaking in $Z_2$ symmetric large $N$ matrix models. In the planar approximation for both the symmetric double-well $\phi^4$ model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficie...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0550-3213(93)90430-W http://cds.cern.ch/record/243683 |
Sumario: | We study symmetry breaking in $Z_2$ symmetric large $N$ matrix models. In the planar approximation for both the symmetric double-well $\phi^4$ model and the symmetric Penner model, we find there is an infinite family of broken symmetry solutions characterized by different sets of recursion coefficients $R_n$ and $S_n$ that all lead to identical free energies and eigenvalue densities. These solutions can be parameterized by an arbitrary angle $\theta(x)$, for each value of $x = n/N < 1$. In the double scaling limit, this class reduces to a smaller family of solutions with distinct free energies already at the torus level. For the double-well $\phi^4$ theory the double scaling string equations are parameterized by a conserved angular momentum parameter in the range $0 \le l < \infty$ and a single arbitrary $U(1)$ phase angle. |
---|