Cargando…
Quantum chains with U$_{q}$(sl(2)) symmetry and unrestricted representations
We consider two-state (q^2=-1) and three-state (q^3=1) one-dimensional quantum spin chains with U_q(SL(2)) symmetry. Taking unrestricted representations (periodic, semi-periodic and nilpotent), we show which are the necessary conditions to obtain a Hermitian Hamiltonian.
Autores principales: | Arnaudon, Daniel, Rittenberg, Vladimir |
---|---|
Lenguaje: | eng |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(93)91142-A http://cds.cern.ch/record/246313 |
Ejemplares similares
-
Quantum chains and fusion rules for representations of SL(2)q at roots of unity
por: Arnaudon, Daniel
Publicado: (1993) -
Finite Chains with Quantum Affine Symmetries
por: Alcaraz, F.C., et al.
Publicado: (1994) -
Hidden U$_{q}$(sl(2)) x U$_{q}$(sl(2)) quantum group symmetry in two dimensional gravity
por: Cremmer, Eugene, et al.
Publicado: (1996) -
Fusion rules and R-matrices for representations of SL(2)$_{q}$ at roots of unity
por: Arnaudon, Daniel
Publicado: (1992) -
The Pokrovski-Talapov phase transition and quantum groups
por: Hinrichsen, Haye, et al.
Publicado: (1992)