Cargando…
On non-perturbative effects at the high-temperature electroweak phase transition
It is argued that confining effects in 3-dimensional non-Abelian gauge theories (high-temperature limit of 4-dimensional ones) imply the existence of the condensates of the gauge and Higgs fields in 3-d vacuum. This non-perturbative effect can decrease the energy of the phase with unbroken symmetry...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/0370-2693(93)90666-6 http://cds.cern.ch/record/250660 |
Sumario: | It is argued that confining effects in 3-dimensional non-Abelian gauge theories (high-temperature limit of 4-dimensional ones) imply the existence of the condensates of the gauge and Higgs fields in 3-d vacuum. This non-perturbative effect can decrease the energy of the phase with unbroken symmetry and may result in the creation of a barrier separating the broken and unbroken phases. Thus the high-temperature phase transitions in gauge theories can be stronger first order than is expected from perturbation theory. The applications of these results to electroweak baryogenesis are briefly discussed. |
---|