Cargando…
The hidden spatial geometry of non-Abelian gauge theories
The Gauss law constraint in the Hamiltonian form of the $SU(2)$ gauge theory of gluons is satisfied by any functional of the gauge invariant tensor variable $\phi^{ij} = B^{ia} B^{ja}$. Arguments are given that the tensor $G_{ij} = (\phi^{-1})_{ij}\,\det B$ is a more appropriate variable. When the H...
Autores principales: | Freedman, Daniel Z., Haagensen, Peter E., Johnson, Kenneth, Latorre, Jose I. |
---|---|
Lenguaje: | eng |
Publicado: |
1993
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/253448 |
Ejemplares similares
-
Spatial geometry of the electric field representation of non-abelian gauge theories
por: Bauer, Michel, et al.
Publicado: (1994) -
Spatial geometry of hamiltonian gauge theories
por: Freedman, Daniel Z.
Publicado: (1994) -
Quantum field theory I: foundations and Abelian and non-Abelian gauge theories
por: Manoukian, Edouard B
Publicado: (2016) -
Difficulties in fixing the gauge in non-Abelian gauge theories
por: Sciuto, S
Publicado: (1979) -
The Schwinger mechanism in non-Abelian gauge theories
por: Sarkar, S
Publicado: (1973)