Cargando…
Polynomial relations in the centre of U$_{q}$(sl(N))
When the parameter of deformation q is a m-th root of unity, the centre of U_q(sl(N))$ contains, besides the usual q-deformed Casimirs, a set of new generators, which are basically the m-th powers of all the Cartan generators of U_q(sl(N)). All these central elements are however not independent. In...
Autores principales: | Arnaudon, Daniel, Bauer, Michel |
---|---|
Lenguaje: | eng |
Publicado: |
1994
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BF00805857 http://cds.cern.ch/record/254220 |
Ejemplares similares
-
Composition of kinetic momenta: the U$_{q}$(sl(2)) case
por: Arnaudon, Daniel
Publicado: (1994) -
Polynomial realization of the U$_{q}$(sl(3)) Gel'fand-(Weyl)-Zetlin basis
por: Dobrev, V K, et al.
Publicado: (1996) -
New fusion rules and R-matrices for SL(N)$_{q}$ at roots of unity
por: Arnaudon, Daniel
Publicado: (1992) -
Operator representations of U$_{q}$(sl$_{2}$(IR))
por: Schmüdgen, K
Publicado: (1995) -
Fusion rules and R-matrices for representations of SL(2)$_{q}$ at roots of unity
por: Arnaudon, Daniel
Publicado: (1992)