Cargando…

Experimental aspects of $SU(5) X U(1)$ supergravity

We study various aspects of $SU(5)\times U(1)$ supergravity as they relate to the experimental verification or falsification of this model. We consider two string-inspired, universal, one-parameter, no-scale soft-supersymmetry-breaking scenarios, driven by the $F$-terms of the moduli and dilaton fie...

Descripción completa

Detalles Bibliográficos
Autores principales: Lopez, Jorge L., Nanopoulos, Dimitri V., Park, Gye T., Wang, Xu, Zichichi, A.
Lenguaje:eng
Publicado: 1994
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.50.2164
http://cds.cern.ch/record/258040
Descripción
Sumario:We study various aspects of $SU(5)\times U(1)$ supergravity as they relate to the experimental verification or falsification of this model. We consider two string-inspired, universal, one-parameter, no-scale soft-supersymmetry-breaking scenarios, driven by the $F$-terms of the moduli and dilaton fields. The model is described in terms of the supersymmetry mass scale (\ie, the chargino mass $m_{\chi^\pm_1}$), $\tan\beta$, and the top-quark mass. We first determine the combined effect on the parameter space of all presently available direct and indirect experimental constraints, including the LEP lower bounds on sparticle and Higgs-boson masses, the $b\to s\gamma$ rate, the anomalous magnetic moment of the muon, the high-precision electroweak parameters $\epsilon_1,\epsilon_b$ (which imply $m_t\lsim180\GeV$), and the muon fluxes in underground detectors (neutrino telescopes). For the still-allowed points in $(m_{\chi^\pm_1},\tan\beta)$ parameter space, we re-evaluate the experimental situation at the Tevatron, LEPII, and HERA. In the 1994 run, the Tevatron could probe chargino masses as high as 100 GeV. At LEPII the parameter space could be explored with probes of different resolutions: Higgs boson searches, selectron searches, and chargino searches. Moreover, for $m_t\lsim150\GeV$, these Higgs-boson searches could explore all of the allowed parameter space with $\sqrt{s}\lsim210\GeV$.